30 câu hỏi 60 phút
Tính \(\int {\frac{{dx}}{{\sqrt[3]{{{{(5x + 3)}^2}}}}}}\)
\(\frac{3}{5}\sqrt[3]{{5x + 3}} + C\)
\(-\frac{3}{2}\sqrt[3]{{5x + 3}} + C\)
\(\sqrt[3]{{5x + 3}} + C\)
\(\frac{1}{2}\sqrt[3]{{5x + 3}} + C\)
Ta có:
\(\int {\frac{{dx}}{{\sqrt[3]{{{{(5x + 3)}^2}}}}}} = \int {{{(5x + 3)}^{ - \frac{2}{3}}}dx} \)
\(= \frac{1}{5}.\frac{{{{(5x + 3)}^{1 - \frac{2}{3}}}}}{{1 - \frac{2}{3}}} + C = \frac{1}{5}.\frac{{{{(5x + 3)}^{\frac{1}{3}}}}}{{\frac{1}{3}}} + C\)
\(= \frac{3}{5}.\sqrt[3]{{5x + 3}} + C\)
Ta có:
\(\int {\frac{{dx}}{{\sqrt[3]{{{{(5x + 3)}^2}}}}}} = \int {{{(5x + 3)}^{ - \frac{2}{3}}}dx} \)
\(= \frac{1}{5}.\frac{{{{(5x + 3)}^{1 - \frac{2}{3}}}}}{{1 - \frac{2}{3}}} + C = \frac{1}{5}.\frac{{{{(5x + 3)}^{\frac{1}{3}}}}}{{\frac{1}{3}}} + C\)
\(= \frac{3}{5}.\sqrt[3]{{5x + 3}} + C\)