Trong các bất phương trình dưới đây, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
A. 0x + 7y > 9 + 7y;
B. ;
C. x2 – 2y < 0;
D. x + 0.y2 ≥ 5 – y
Đáp án
Đáp án đúng: B
Bất phương trình bậc nhất hai ẩn có dạng ax + by > c, ax + by < c, ax + by ≥ c, hoặc ax + by ≤ c, trong đó a, b, và c là các số thực và a và b không đồng thời bằng 0.
Đáp án A: 0x + 7y > 9 + 7y <=> 0 > 9 (vô lý). Tuy nhiên, theo định nghĩa, bất phương trình bậc nhất hai ẩn có dạng ax + by > c (hoặc các dạng tương tự), trong đó a và b không đồng thời bằng 0. Trong trường hợp này, a = 0 và b = 7, c = 9 + 7y. Vậy A có thể được coi là đáp án đúng nhất trong các đáp án đã cho, mặc dù sau khi rút gọn sẽ trở thành một điều vô lý.
Đáp án B: 1/x + y ≤ -10 không phải là bất phương trình bậc nhất hai ẩn vì có 1/x.
Đáp án C: x^2 - 2y < 0 không phải là bất phương trình bậc nhất hai ẩn vì có x^2.
Đáp án D: 1/2x + 0.y^2 ≥ 5 - y không phải là bất phương trình bậc nhất hai ẩn vì có y^2.
Bất phương trình bậc nhất hai ẩn có dạng ax + by > c, ax + by < c, ax + by ≥ c, hoặc ax + by ≤ c, trong đó a, b, và c là các số thực và a và b không đồng thời bằng 0.
Đáp án A: 0x + 7y > 9 + 7y <=> 0 > 9 (vô lý). Tuy nhiên, theo định nghĩa, bất phương trình bậc nhất hai ẩn có dạng ax + by > c (hoặc các dạng tương tự), trong đó a và b không đồng thời bằng 0. Trong trường hợp này, a = 0 và b = 7, c = 9 + 7y. Vậy A có thể được coi là đáp án đúng nhất trong các đáp án đã cho, mặc dù sau khi rút gọn sẽ trở thành một điều vô lý.
Đáp án B: 1/x + y ≤ -10 không phải là bất phương trình bậc nhất hai ẩn vì có 1/x.
Đáp án C: x^2 - 2y < 0 không phải là bất phương trình bậc nhất hai ẩn vì có x^2.
Đáp án D: 1/2x + 0.y^2 ≥ 5 - y không phải là bất phương trình bậc nhất hai ẩn vì có y^2.
Hình thoi ABCD có $\angle DAB = 60^{\circ}$ nên tam giác ABD là tam giác đều cạnh 2a.
Suy ra BD = 2a, AO = OC = a$\sqrt{3}$, BO = OD = a.
*Xét đáp án A: $|\overrightarrow{AD} + \overrightarrow{AB}| = |\overrightarrow{AC}| = AC = 2AO = 2a\sqrt{3}$. Vậy A đúng.
*Xét đáp án D: $|\overrightarrow{BA} + \overrightarrow{BC}| = |\overrightarrow{BD}| = BD = 2a$. Vì $\angle ABC = 120^\circ$ nên $|\overrightarrow{BA} + \overrightarrow{BC}| = 2a\sqrt{3}$. Vậy D đúng.
*Xét đáp án C: $|\overrightarrow{OB} - \overrightarrow{CD}| = |\overrightarrow{OB} + \overrightarrow{DC}|$. Vì OB = a và DC = 2a, OB và DC cùng phương, ngược chiều nên $|\overrightarrow{OB} + \overrightarrow{DC}| = |-a + 2a| = a$. Vậy C sai.
*Xét đáp án B: $|\overrightarrow{OB} + \overrightarrow{AD}|$. Ta có $|\overrightarrow{OB} + \overrightarrow{AD}|^2 = OB^2 + AD^2 + 2OB.AD.\cos(\overrightarrow{OB}, \overrightarrow{AD})$. Ta thấy $\overrightarrow{OB}$ vuông góc với $\overrightarrow{AD}$ do đó tích vô hướng bằng 0. $|\overrightarrow{OB} + \overrightarrow{AD}| = \sqrt{a^2 + 4a^2} = a\sqrt{5}$