Trắc nghiệm Định nghĩa và ý nghĩa của đạo hàm Toán Lớp 11
-
Câu 1:
Tính đạo hàm của hàm số \(y=2 \sin 3 x+\cos 2 x\)
A. \(y^{\prime}=6 \cos 3 x-2 \sin 2 x\)
B. \(y^{\prime}=2 \cos 3 x+\sin 2 x\)
C. \(y^{\prime}=-6 \cos 3 x+2 \sin 2 x\)
D. \(y^{\prime}=2 \cos 3 x-\sin 2 x\)
-
Câu 2:
Cho hàm số \(f(x)=\frac{x-2}{x-1}\). Tính f'(x).
A. \(f^{\prime}(x)=\frac{1}{(x-1)^{2}}\)
B. \(f^{\prime}(x)=\frac{2}{(x-1)^{2}}\)
C. \(f^{\prime}(x)=\frac{-2}{(x-1)^{2}}\)
D. \(f^{\prime}(x)=\frac{-1}{(x-1)^{2}}\)
-
Câu 3:
Đạo hàm của hàm số \(y=\sin \left(\frac{\pi}{2}-2 x\right)\) bằng biểu thức nào sau đây?
A. \(-\cos \left(\frac{\pi}{2}-2 x\right)\)
B. \(-2 \cos \left(\frac{\pi}{2}-2 x\right)\)
C. \(2 \cos \left(\frac{\pi}{2}-2 x\right)\)
D. \(\cos \left(\frac{\pi}{2}-2 x\right)\)
-
Câu 4:
Cho hàm số y = f(x) xác định trên \(\mathbb{R}\) thỏa mãn \(\lim\limits _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}=2\). Kết quả đúng là
A. \(f^{\prime}(2)=3\)
B. \(f^{\prime}(x)=2\)
C. \(f^{\prime}(x)=3\)
D. \(f^{\prime}(3)=2\)
-
Câu 5:
Cho hàm số \(f(x)=\frac{2 x-1}{x+1}\)xác định trên \(\mathbb{R} \backslash\{1\}\). Đạo hàm của hàm số f (x) là:
A. \(f^{\prime}(x)=\frac{1}{(x+1)^{2}}\)
B. \(f^{\prime}(x)=\frac{2}{(x+1)^{2}}\)
C. \(f^{\prime}(x)=\frac{-1}{(x+1)^{2}}\)
D. \(f^{\prime}(x)=\frac{3}{(x+1)^{2}}\)
-
Câu 6:
Phát biểu nào trong các phát biểu sau là đúng ?
A. Nếu hàm số y=f(x) có đạo hàm trái tại \(x_0\) thì nó liên tục tại điểm đó.
B. Nếu hàm số y=f(x) có đạo hàm phải tại \(x_0\) thì nó liên tục tại điểm đó.
C. Nếu hàm số y=f(x) có đạo hàm tại \(x_0\) thì nó liên tục tại điểm \(-x_0\)
D. Nếu hàm số y=f(x) có đạo hàm tại \(x_0\) thì nó liên tục tại điểm đó
-
Câu 7:
Đạo hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEaiab % gUcaRiaaiMdaaeaacaWG4bGaey4kaSIaaG4maaaacqGHRaWkdaGcaa % qaaiaaisdacaWG4baaleqaaaaa!4270! f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \) tại điểm x = 1 bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaI1aaabaGaaGioaaaacaGGUaaaaa!3923! - \frac{5}{8}.\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaI1aaabaGaaGioaaaacaGGUaaaaa!3923! - \frac{25}{16}.\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaGaaGymaaqaaiaaiIdaaaGaaiOlaaaa!38ED! \frac{{11}}{8}.\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaGaaGymaaqaaiaaiIdaaaGaaiOlaaaa!38ED! \frac{{5}}{8}.\)
-
Câu 8:
Đạo hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maalaaabaGaeyOeI0IaaG4maiaadIha % cqGHRaWkcaaI0aaabaGaaGOmaiaadIhacqGHRaWkcaaIXaaaaaaa!41E8! f(x) = \frac{{ - 3x + 4}}{{2x + 1}}\) tại điểm x = -1 là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaGaaGymaaqaaiaaiodaaaGaaiOlaaaa!39D6! - \frac{{11}}{3}.\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaGaaGymaaqaaiaaiodaaaGaaiOlaaaa!39D6! \frac{{1}}{5}.\)
C. -11
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaGaaGymaaqaaiaaiodaaaGaaiOlaaaa!39D6! - \frac{{11}}{9}.\)
-
Câu 9:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEaaqa % amaakaaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaa % aabeaaaaaaaa!3F18! f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tình’(0)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGinaaaaaaa!377D! \frac{1}{4}\)
B. 0
C. 1
D. 2
-
Câu 10:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaiwdaaaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaOGaey % OeI0IaaGOmaiaadIhacqGHsislcaaIZaaaaa!4380! f\left( x \right) = {x^5} + {x^3} - 2x - 3\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGMbGaai4j % amaabmaabaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiaais % dacaWGMbWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa!4444! f'\left( 1 \right) + f'\left( { - 1} \right) + 4f\left( 0 \right)\)
A. 4
B. 5
C. 6
D. 7
-
Câu 11:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % aiaadIhaaaGaey4kaSYaaSaaaeaacaaIXaaabaWaaOaaaeaacaWG4b % aaleqaaaaakiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaaaa!41C9! f\left( x \right) = \frac{1}{x} + \frac{1}{{\sqrt x }} + {x^2}\) . Tính f'(1)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaaaa!377B! \frac{1}{2}\)
B. 1
C. 2
D. 3
-
Câu 12:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % aiaadIhaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaamiEamaaCaaale % qabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaiodaaeaacaWG4bWa % aWbaaSqabeaacaaIZaaaaaaaaaa!4366! f\left( x \right) = \frac{1}{x} + \frac{2}{{{x^2}}} + \frac{3}{{{x^3}}}\). Tính f’(-1).
A. -14
B. 13
C. 12
D. 10
-
Câu 13:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiOaiaadA % gadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa % iodacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadI % hacqGHRaWkcaaIXaaabaGaaGOmamaakaaabaGaaG4maiaadIhadaah % aaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaamiEamaaCaaaleqaba % GaaGOmaaaakiabgUcaRiaaigdaaSqabaaaaaaa!4B34! \;f\left( x \right) = \frac{{3{x^2} + 2x + 1}}{{2\sqrt {3{x^3} + 2{x^2} + 1} }}\). Giá trị f’(0)là:
A. 0
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaacaGGUaaaaa!382C! \frac{1}{2}.\)
C. 1
D. Không tồn tại
-
Câu 14:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiaaykW7cqGH9aqpdaGcbaqaaiaa % dIhaaSqaaiaaiodaaaaaaa!3DCA! f\left( x \right)\, = \sqrt[3]{x}\). Giá trị f’(8)bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOnaaaaaaa!377E! \frac{1}{6}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOnaaaaaaa!377E! \frac{1}{12}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOnaaaaaaa!377E! -\frac{1}{6}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOnaaaaaaa!377E! -\frac{1}{12}\)
-
Câu 15:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % dIhaaeaacaWG4bGaeyOeI0IaaGOmaaaaaaa!3E7C! y = \frac{{{x^2} + x}}{{x - 2}}\), đạo hàm của hàm số tại x = 1 là:
A. -4
B. -3
C. -2
D. -5
-
Câu 16:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgacaGGOaGaamiEaiaacMcacqGH9aqpdaWcaaqaaiaadIha % aeaadaGcaaqaaiaaisdacqGHsislcaWG4bWaaWbaaSqabeaacaaIYa % aaaaqabaaaaaaa!40ED! y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính y’(0) bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa % igdaaeaacaaIYaaaaaaa!3C6D! y'\left( 0 \right) = \frac{1}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa % igdaaeaacaaIYaaaaaaa!3C6D! y'\left( 0 \right) = \frac{1}{3}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa % igdaaeaacaaIYaaaaaaa!3C6D! y'\left( 0 \right) = 1\)
D. \(y'\left( 0 \right) = 2\)
-
Câu 17:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaaeaaaaaaaaa8qacaaIYaaa % aOGaey4kaSIaamiEaaWdaeaacaWG4bGaeyOeI0IaaGOmaaaaaaa!3EAC! y = \frac{{{x^2} + x}}{{x - 2}}\) đạo hàm của hàm số tại x = 1 là:
A. y’(1) = -4.
B. y’(1) = -5.
C. y’(1) = -3.
D. y’(1) = -2.
-
Câu 18:
Cho hàm số f(x) xác định bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaadaWc % aaqaamaakaaabaGaamiEamaaCaaaleqabaaeaaaaaaaaa8qacaaIYa % aaaOGaey4kaSIaaGymaaWcpaqabaGccqGHsislcaaIXaaabaGaamiE % aaaacaaMc8UaaGPaVlaaykW7daqadaqaaiaadIhacqGHGjsUcaaIWa % aacaGLOaGaayzkaaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7 % caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl % aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua % aGPaVlaaykW7caaMc8+aaeWaaeaacaWG4bGaeyypa0JaaGimaaGaay % jkaiaawMcaaaaacaGL7baaaaa!7447! f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sqrt {{x^2} + 1} - 1}}{x}\,\,\,\left( {x \ne 0} \right)\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x = 0} \right) \end{array} \right.\). Giá trị f’(0) bằng:
A. 0
B. 1
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaaaa!377B! \frac{1}{2}\)
D. Không tồn tại
-
Câu 19:
Cho hàm số f(x) xác định trên R\{1} bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGOmaiaa % dIhaaeaacaWG4bGaeyOeI0IaaGymaaaaaaa!3ED9! f\left( x \right) = \frac{{2x}}{{x - 1}}\). Giá trị của f’(-1) bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaaaa!377B! \frac{1}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaaaaa!377B! -\frac{1}{2}\)
C. -2
D. Không tồn tại
-
Câu 20:
Cho hàm số f(x) xác định trên R bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakeaabaGaamiEaaWc % baGaaG4maaaaaaa!3C40! f\left( x \right) = \sqrt[3]{x}\). Giá trị f’(-8) bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGymaiaaikdaaaaaaa!3836! \frac{1}{{12}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGymaiaaikdaaaaaaa!3836! -\frac{1}{{12}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGymaiaaikdaaaaaaa!3836! \frac{1}{{6}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGymaiaaikdaaaaaaa!3836! -\frac{1}{{6}}\)
-
Câu 21:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaaqaamaakaaabaGaaGinaiabgkHiTiaadIha % daahaaWcbeqaaabaaaaaaaaapeGaaGOmaaaaa8aabeaaaaGccaGGUa % aaaa!3D91! y = \frac{x}{{\sqrt {4 - {x^2}} }};\) y’(0) bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI % XaaabaGaaGOmaaaaaaa!3BCE! y'\left( 0 \right) = \frac{1}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI % XaaabaGaaG4maaaaaaa!3BCF! y'\left( 0 \right) = \frac{1}{3}\)
C. y'(0) = 1
D. y'(0) = 2
-
Câu 22:
Cho hàm số f(x) xác định trên R bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakaaabaGaamiEamaa % Caaaleqabaaeaaaaaaaaa8qacaaIYaaaaaWdaeqaaaaa!3C90! f\left( x \right) = \sqrt {{x^2}} \). Giá trị f’(0) bằng
A. 0
B. 2
C. 1
D. Không tồn tại
-
Câu 23:
Với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maalaaabaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgkHiTiaaikdacaWG4bGaey4kaSIaaGynaaqaaiaadI % hacqGHsislcaaIXaaaaaaa!4327! f(x) = \frac{{{x^2} - 2x + 5}}{{x - 1}}\). Thì f’(-1)bằng:
A. 1
B. -3
C. -5
D. 0
-
Câu 24:
Đạo hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEamaa % Caaaleqabaaeaaaaaaaaa8qacaaIYaaaaOGaey4kaSIaaGymaaWdai % aawIcacaGLPaaadaahaaWcbeqaa8qacaaI0aaaaaaa!40AB! f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm x = -1 là:
A. -32
B. 30
C. -64
D. 12
-
Câu 25:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabgkHiTiaadIhadaah % aaWcbeqaaiaaisdaaaGccqGHRaWkcaaI0aGaamiEamaaCaaaleqaba % GaaG4maaaakiabgkHiTiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaa % aOGaey4kaSIaaGOmaiaadIhacqGHRaWkcaaIXaaaaa!48AC! f\left( x \right) = - {x^4} + 4{x^3} - 3{x^2} + 2x + 1\) xác định trên R. Giá trị f’(-1)bằng:
A. 4
B. 14
C. 25
D. 24
-
Câu 26:
Cho hàm số f(x) xác định trên R bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaikdacaWG4bWaaWba % aSqabeaaqaaaaaaaaaWdbiaaikdaaaGccqGHRaWkcaaIXaaaaa!3ED4! f\left( x \right) = 2{x^2} + 1\) . Giá trị f’(-1) bằng:
A. 2
B. 6
C. -4
D. 3
-
Câu 27:
Số gia của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaikdaaaGccqGHsislcaaI0aGaamiEaiabgUcaRiaaigdaaaa!409F! f\left( x \right) = {x^2} - 4x + 1\) ứng với x và \(\Delta x\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam % iEamaabmaabaGaeuiLdqKaamiEaiabgUcaRiaaikdacaWG4bGaeyOe % I0IaaGinaaGaayjkaiaawMcaaiaac6caaaa!413A! \Delta x\left( {\Delta x + 2x - 4} \right).\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadI % hacqGHRaWkcqqHuoarcaWG4bGaaiOlaaaa!3BA3! 2x + \Delta x.\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam % iEaiaac6cadaqadaqaaiaaikdacaWG4bGaeyOeI0IaaGinaiabfs5a % ejaadIhaaiaawIcacaGLPaaacaGGUaaaaa!410A! \Delta x.\left( {2x - 4\Delta x} \right).\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaadI % hacqGHsislcaaI0aGaeuiLdqKaamiEaiaac6caaaa!3C6C! 2x - 4\Delta x.\)
-
Câu 28:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maaceaaeaqabeaacaWG4bWaaWbaaSqa % beaacaaIYaaaaOGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa % GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca % caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai % aabccacaqGRbGaaeiAaiaabMgacaqGGaGaaeiiaiaabccacaWG4bGa % eyizImQaaGOmaaqaaiabgkHiTmaalaaabaGaamiEamaaCaaaleqaba % GaaGOmaaaaaOqaaiaaikdaaaGaey4kaSIaamOyaiaadIhacqGHsisl % caaI2aGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai % aabUgacaqGObGaaeyAaiaabccacaqGGaGaaeiiaiaabccacaWG4bGa % eyOpa4JaaGOmaaaacaGL7baaaaa!68AF! f(x) = \left\{ \begin{array}{l} {x^2}{\rm{ khi }}x \le 2\\ - \frac{{{x^2}}}{2} + bx - 6{\rm{ khi }}x > 2 \end{array} \right.\). Để hàm số này có đạo hàm tại x = 2 thì giá trị của b là
A. 3
B. 6
C. 1
D. -6
-
Câu 29:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maaceaaeaqabeaadaWcaaqaaiaaioda % cqGHsisldaGcaaqaaiaaisdacqGHsislcaWG4baaleqaaaGcbaGaaG % inaaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa % ae4AaiaabIgacaqGPbGaaeiiaiaabccacaqGGaGaamiEaiabgcMi5k % aaicdaaeaadaWcaaqaaiaaigdaaeaacaaI0aaaaiaabccacaqGGaGa % aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca % qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa % bccacaqGGaGaaeiiaiaabUgacaqGObGaaeyAaiaabccacaqGGaGaae % iiaiaabccacaWG4bGaeyypa0JaaGimaaaacaGL7baaaaa!6437! f(x) = \left\{ \begin{array}{l} \frac{{3 - \sqrt {4 - x} }}{4}{\rm{ khi }}x \ne 0\\ \frac{1}{4}{\rm{ khi }}x = 0 \end{array} \right.\). Khi đó f’(0)là kết quả nào sau đây?
A. \(\frac{1}{4}\)
B. \(\frac{1}{16}\)
C. \(\frac{1}{32}\)
D. Không tồn tại
-
Câu 30:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maaceaaeaqabeaacaaIYaGaamiEaiab % gUcaRiaaiodacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccaca % qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa % bccacaqGGaGaaeiiaiaadUgacaWGObGaamyAaiaabccacaWG4bGaey % yzImRaaGymaaqaamaalaaabaGaamiEamaaCaaaleqabaGaaG4maaaa % kiabgUcaRiaaikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 % IaaG4naiaadIhacqGHRaWkcaaI0aaabaGaamiEaiabgkHiTiaaigda % aaGaaeiiaiaabUgacaqGObGaaeyAaiaabccacaWG4bGaeyipaWJaaG % ymaaaacaGL7baaaaa!63B9! f(x) = \left\{ \begin{array}{l} 2x + 3{\rm{ }}khi{\rm{ }}x \ge 1\\ \frac{{{x^3} + 2{x^2} - 7x + 4}}{{x - 1}}{\rm{ khi }}x < 1 \end{array} \right.\) tại \(x_0 = 1\)
A. 0
B. 4
C. 5
D. Đáp án khác
-
Câu 31:
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maaceaaeaqabeaadaWcaaqaamaakaaa % baGaamiEamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaikdacaWG4b % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamiEaiabgUcaRiaaigda % aSqabaGccqGHsislcaaIXaaabaGaamiEaiabgkHiTiaaigdaaaGaae % iiaiaabccacaqGRbGaaeiAaiaabMgacaqGGaGaaeiiaiaadIhacqGH % GjsUcaaIXaaabaGaaGimaiaabccacaqGGaGaaeiiaiaabccacaqGGa % GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca % caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai % aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRbGa % aeiAaiaabMgacaqGGaGaamiEaiabg2da9iaaigdaaaGaay5Eaaaaaa!6A68! f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {{x^3} - 2{x^2} + x + 1} - 1}}{{x - 1}}{\rm{ khi }}x \ne 1\\ 0{\rm{ khi }}x = 1 \end{array} \right.\) tại điểm \(x_0 = 1\)
A. \(\frac{1}{3}\)
B. \(\frac{1}{5}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
-
Câu 32:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaikdaaaGccqGHsislcaWG4baaaa!3E44! f\left( x \right) = {x^2} - x\), đạo hàm của hàm số ứng với số gia \(\Delta x\) của đối số x tại x0 là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiabfs5aejaadIhacqGHsgIRcaaIWaaa % beaakmaabmaabaWaaeWaaeaacqqHuoarcaWG4baacaGLOaGaayzkaa % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhacqqHuoar % caWG4bGaeyOeI0IaeuiLdqKaamiEaaGaayjkaiaawMcaaiaac6caaa % a!4D78! \mathop {\lim }\limits_{\Delta x \to 0} \left( {{{\left( {\Delta x} \right)}^2} + 2x\Delta x - \Delta x} \right).\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiabfs5aejaadIhacqGHsgIRcaaIWaaa % beaakmaabmaabaGaeuiLdqKaamiEaiabgUcaRiaaikdacaWG4bGaey % OeI0IaaGymaaGaayjkaiaawMcaaiaac6caaaa!46F1! \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 2x - 1} \right).\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiabfs5aejaadIhacqGHsgIRcaaIWaaa % beaakmaabmaabaGaeuiLdqKaamiEaiabgUcaRiaaikdacaWG4bGaey % 4kaSIaaGymaaGaayjkaiaawMcaaiaac6caaaa!46E6! \mathop {\lim }\limits_{\Delta x \to 0} \left( {\Delta x + 2x + 1} \right).\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiabfs5aejaadIhacqGHsgIRcaaIWaaa % beaakmaabmaabaWaaeWaaeaacqqHuoarcaWG4baacaGLOaGaayzkaa % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadIhacqqHuoar % caWG4bGaey4kaSIaeuiLdqKaamiEaaGaayjkaiaawMcaaiaac6caaa % a!4D6D! \mathop {\lim }\limits_{\Delta x \to 0} \left( {{{\left( {\Delta x} \right)}^2} + 2x\Delta x + \Delta x} \right).\)
-
Câu 33:
Số gia của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEamaa % CaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaaaa!3D26! f\left( x \right) = \frac{{{x^2}}}{2}\) ứng với số gia \(\Delta x\) của đối số x tại \(x_0 = -1\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaadaqadaqaaiabfs5aejaadIhaaiaawIcacaGL % PaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcqqHuoarcaWG4bGaai % Olaaaa!405B! \frac{1}{2}{\left( {\Delta x} \right)^2} - \Delta x.\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaadaWadaqaamaabmaabaGaeuiLdqKaamiEaaGa % ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabfs5aej % aadIhaaiaawUfacaGLDbaacaGGUaaaaa!424D! \frac{1}{2}\left[ {{{\left( {\Delta x} \right)}^2} - \Delta x} \right].\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaadaWadaqaamaabmaabaGaeuiLdqKaamiEaaGa % ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiabfs5aej % aadIhaaiaawUfacaGLDbaacaGGUaaaaa!4242! \frac{1}{2}\left[ {{{\left( {\Delta x} \right)}^2} + \Delta x} \right].\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGOmaaaadaqadaqaaiabfs5aejaadIhaaiaawIcacaGL % PaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqqHuoarcaWG4bGaai % Olaaaa!4050! \frac{1}{2}{\left( {\Delta x} \right)^2} + \Delta x.\)
-
Câu 34:
Tỉ số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % qHuoarcaWG5baabaGaeuiLdqKaamiEaaaaaaa!3ACA! \frac{{\Delta y}}{{\Delta x}}\) của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaikdacaWG4bWaaeWa % aeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa!4051! f\left( x \right) = 2x\left( {x - 1} \right)\) theo x và \(\Delta x\) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % hacqGHRaWkcaaIYaGaeuiLdqKaamiEaiabgUcaRiaaikdacaGGUaaa % aa!3DFF! 4x + 2\Delta x + 2.\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % hacqGHRaWkcaaIYaWaaeWaaeaacqqHuoarcaWG4baacaGLOaGaayzk % aaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaac6caaaa!4086! 4x + 2{\left( {\Delta x} \right)^2} - 2.\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % hacqGHRaWkcaaIYaGaeuiLdqKaamiEaiabgkHiTiaaikdacaGGUaaa % aa!3E0A! 4x + 2\Delta x - 2.\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadI % hacqqHuoarcaWG4bGaey4kaSIaaGOmamaabmaabaGaeuiLdqKaamiE % aaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaik % dacqqHuoarcaWG4bGaaiOlaaaa!454C! 4x\Delta x + 2{\left( {\Delta x} \right)^2} - 2\Delta x.\)
-
Câu 35:
Số gia của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaiodaaaaaaa!3C51! f\left( x \right) = {x^3}\) ứng với \(x_0 = 2\) và \(\Delta x=1\) bằng bao nhiêu?
A. -19
B. 7
C. 19
D. -7
-
Câu 36:
Cho hàm số f(x) liên tục tại \(x_0\). Đạo hàm của f(x) tại \(x_0\) là
A. \(f(x_0)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGMbGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWG % ObGaaiykaiabgkHiTiaadAgacaGGOaGaamiEamaaBaaaleaacaaIWa % aabeaakiaacMcaaeaacaWGObaaaaaa!420E! \frac{{f({x_0} + h) - f({x_0})}}{h}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIgacqGHsgIRcaaIWaaabeaakmaa % laaabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey % 4kaSIaamiAaiaacMcacqGHsislcaWGMbGaaiikaiaadIhadaWgaaWc % baGaaGimaaqabaGccaGGPaaabaGaamiAaaaaaaa!48B5! \mathop {\lim }\limits_{h \to 0} \frac{{f({x_0} + h) - f({x_0})}}{h}\) ( nếu tồn tại giới hạn )
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci % GGSbGaaiyAaiaac2gaaSqaaiaadIgacqGHsgIRcaaIWaaabeaakmaa % laaabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaey % 4kaSIaamiAaiaacMcacqGHsislcaWGMbGaaiikaiaadIhadaWgaaWc % baGaaGimaaqabaGccqGHsislcaWGObGaaiykaaqaaiaadIgaaaaaaa!4A8F! \mathop {\lim }\limits_{h \to 0} \frac{{f({x_0} + h) - f({x_0} - h)}}{h}\) ( nếu tồn tại giới hạn )
-
Câu 37:
Giới hạn (nếu tồn tại) nào sau đây dùng để định nghĩa đạo hàm của hàm số y = f(x) tại \(x_0 < 1\)?
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca % qGSbGaaeyAaiaab2gaaKqbagaacqGHuoarcaWG4bGaeyOKH4QaaGim % aaWcbeaakmaalaaabaGaamOzaiaacIcacaWG4bGaey4kaSIaeyiLdq % KaamiEaiaacMcacqGHsislcaWGMbGaaiikaiaadIhadaWgaaWcbaGa % aGimaaqabaGccaGGPaaabaGaeyiLdqKaamiEaaaaaaa!4CB3! \mathop {{\rm{lim}}}\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f({x_0})}}{{\Delta x}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca % qGSbGaaeyAaiaab2gaaKqbagaajug4aiaadIhacqGHsgIRcaaIWaaa % leqaaOWaaSaaaeaacaWGMbGaaiikaiaadIhacaGGPaGaeyOeI0Iaam % OzaiaacIcacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaqaaiaa % dIhacqGHsislcaWG4bWaaSbaaSqaaiaaicdaaeqaaaaaaaa!4ABD! \mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca % qGSbGaaeyAaiaab2gaaKqbagaajug4aiaadIhacqGHsgIRcaWG4bWc % daWgaaqcfayaaKqzGdGaaGimaaqcfayabaaaleqaaOWaaSaaaeaaca % WGMbGaaiikaiaadIhacaGGPaGaeyOeI0IaamOzaiaacIcacaWG4bWa % aSbaaSqaaiaaicdaaeqaaOGaaiykaaqaaiaadIhacqGHsislcaWG4b % WaaSbaaSqaaiaaicdaaeqaaaaaaaa!4E50! \mathop {{\rm{lim}}}\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaca % qGSbGaaeyAaiaab2gaaKqbagaacqGHuoarcaWG4bGaeyOKH4QaaGim % aaWcbeaakmaalaaabaGaamOzaiaacIcacaWG4bWaaSbaaSqaaiaaic % daaeqaaOGaey4kaSIaeyiLdqKaamiEaiaacMcacqGHsislcaWGMbGa % aiikaiaadIhacaGGPaaabaGaeyiLdqKaamiEaaaaaaa!4CB3! \mathop {{\rm{lim}}}\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f(x)}}{{\Delta x}}\)
-
Câu 38:
Cho hàm số \(y=\frac{3 x+5}{-1+2 x}\). Đạo hàm y' của hàm số là
A. \(\frac{7}{(2 x-1)^{2}}\)
B. \(\frac{1}{(2 x-1)^{2}}\)
C. \(-\frac{13}{(2 x-1)^{2}}\)
D. \(\frac{13}{(2 x-1)^{2}}\)
-
Câu 39:
Đạo hàm của hàm số \(y=(2 x-1) \sqrt{x^{2}+x}\) là:
A. \(y^{\prime}=2 \sqrt{x^{2}+x}-\frac{4 x^{2}-1}{2 \sqrt{x^{2}+x}}\)
B. \(y^{\prime}=2 \sqrt{x^{2}+x}+\frac{4 x^{2}-1}{\sqrt{x^{2}+x}}\)
C. \(y^{\prime}=2 \sqrt{x^{2}+x}+\frac{4 x^{2}-1}{2 \sqrt{x^{2}+x}}\)
D. \(y^{\prime}=2 \sqrt{x^{2}+x}+\frac{4 x^{2}+1}{2 \sqrt{x^{2}+x}}\)
-
Câu 40:
Đạo hàm của hàm số \(y=\frac{2 x-3}{5+x}-\sqrt{2 x}\) là:
A. \(y^{\prime}=\frac{13}{(x+5)^{2}}-\frac{1}{\sqrt{2 x}}\)
B. \(y^{\prime}=\frac{17}{(x+5)^{2}}-\frac{1}{2 \sqrt{2 x}}\)
C. \(y^{\prime}=\frac{13}{(x+5)^{2}}-\frac{1}{2 \sqrt{2 x}}\)
D. \(y^{\prime}=\frac{17}{(x+5)^{2}}-\frac{1}{\sqrt{2 x}}\)
-
Câu 41:
Đạo hàm của hàm số \(y=\frac{\sqrt{x}}{1-2 x}\) bằng biểu thức nào sau đây?
A. \(\frac{1}{2 \sqrt{x}(1-2 x)^{2}}\)
B. \(\frac{1}{-4 \sqrt{x}}\)
C. \(\frac{1-2 x}{2 \sqrt{x}(1-2 x)^{2}}\)
D. \(\frac{1+2 x}{2 \sqrt{x}(1-2 x)^{2}}\)
-
Câu 42:
Đạo hàm của hàm số y =10là:
A. 10
B. -10
C. 0
D. 1
-
Câu 43:
Cho hàm số \(f(x)=a x+b\) Trong các mệnh đề sau, mệnh đề nào đúng?
A. \(f^{\prime}(x)=-a\)
B. \(f^{\prime}(x)=-b\)
C. \(f^{\prime}(x)=a\)
D. \(f^{\prime}(x)=b\)
-
Câu 44:
Cho hàm số \(f(x)=2 x^{3}+1\) Giá trị f '(- 1) bằng:
A. 6
B. 3
C. -2
D. -6
-
Câu 45:
Cho hàm số \(y=\sqrt{2 x^{2}+5 x-4}\). Đạo hàm y' của hàm số là:
A. \(\frac{4 x+5}{2 \sqrt{2 x^{2}+5 x-4}}\)
B. \(\frac{4 x+5}{\sqrt{2 x^{2}+5 x-4}}\)
C. \(\frac{2 x+5}{2 \sqrt{2 x^{2}+5 x-4}}\)
D. \(\frac{2 x+5}{\sqrt{2 x^{2}+5 x-4}}\)
-
Câu 46:
Cho hàm số \(y=\frac{-2 x^{2}+x-7}{x^{2}+3}\) Đạo hàm y' của hàm số là
A. \(\frac{-3 x^{2}-13 x-10}{\left(x^{2}+3\right)^{2}}\)
B. \(\frac{-x^{2}+x+3}{\left(x^{2}+3\right)^{2}}\)
C. \(\frac{-x^{2}+2 x+3}{\left(x^{2}+3\right)^{2}}\)
D. \(\frac{-7 x^{2}-13 x-10}{\left(x^{2}+3\right)^{2}}\)
-
Câu 47:
Đạo hàm của \(y=\sqrt{3 x^{2}-2 x+1}\) bằng:
A. \(\frac{3 x-1}{\sqrt{3 x^{2}-2 x+1}}\)
B. \(\frac{6 x-2}{\sqrt{3 x^{2}-2 x+1}}\)
C. \(\frac{3 x^{2}-1}{\sqrt{3 x^{2}-2 x+1}}\)
D. \(\frac{1}{2 \sqrt{3 x^{2}-2 x+1}}\)
-
Câu 48:
Đạo hàm của hàm số \(y=\frac{x(1-3 x)}{x+1}\) bằng biểu thức nào sau đây?
A. \(\frac{-9 x^{2}-4 x+1}{(x+1)^{2}}\)
B. \(\frac{-3 x^{2}-6 x+1}{(x+1)^{2}}\)
C. \(1-6 x^{2}\)
D. \(\frac{1-6 x^{2}}{(x+1)^{2}}\)
-
Câu 49:
Đạo hàm của hàm số \(y=\left(x^{3}-2 x^{2}\right)^{2016}\) là
A. \(y^{\prime}=2016\left(x^{3}-2 x^{2}\right)^{2015}\)
B. \(y^{\prime}=2016\left(x^{3}-2 x^{2}\right)^{2015}\left(3 x^{2}-4 x\right)\)
C. \(y^{\prime}=2016\left(x^{3}-2 x^{2}\right)\left(3 x^{2}-4 x\right)\)
D. \(y^{\prime}=2016\left(x^{3}-2 x^{2}\right)\left(3 x^{2}-2 x\right)\)
-
Câu 50:
Cho hàm số \(f(x)=-2 x^{2}+3 x\) Hàm số có đạo hàm f '(x) bằng
A. \(4 x-3\)
B. \(-4 x+3\)
C. \(4 x+3\)
D. \(-4 x-3\)