Cho hàm số f(x) xác định bởi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaadaWc % aaqaamaakaaabaGaamiEamaaCaaaleqabaaeaaaaaaaaa8qacaaIYa % aaaOGaey4kaSIaaGymaaWcpaqabaGccqGHsislcaaIXaaabaGaamiE % aaaacaaMc8UaaGPaVlaaykW7daqadaqaaiaadIhacqGHGjsUcaaIWa % aacaGLOaGaayzkaaaabaGaaGimaiaaykW7caaMc8UaaGPaVlaaykW7 % caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl % aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua % aGPaVlaaykW7caaMc8+aaeWaaeaacaWG4bGaeyypa0JaaGimaaGaay % jkaiaawMcaaaaacaGL7baaaaa!7447! f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sqrt {{x^2} + 1} - 1}}{x}\,\,\,\left( {x \ne 0} \right)\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x = 0} \right) \end{array} \right.\). Giá trị f’(0) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0ZaaCbeaeaaciGG % SbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaabeaakmaala % aabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaa % dAgadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaWG4bGaeyOeI0 % IaaGimaaaacqGH9aqpdaWfqaqaaiGacYgacaGGPbGaaiyBaaWcbaGa % amiEaiabgkziUkaaicdaaeqaaOWaaSaaaeaadaGcaaqaaiaadIhada % ahaaWcbeqaaabaaaaaaaaapeGaaGOmaaaakiabgUcaRiaaigdaaSWd % aeqaaOGaeyOeI0IaaGymaaqaaiaadIhadaahaaWcbeqaa8qacaaIYa % aaaaaaaaa!5A77! f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 1} - 1}}{{{x^2}}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaC % beaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIhacqGHsgIRcaaIWaaa % beaakmaalaaabaGaaGymaaqaamaakaaabaGaamiEamaaCaaaleqaba % aeaaaaaaaaa8qacaaIYaaaaOGaey4kaSIaaGymaaWcpaqabaGccqGH % RaWkcaaIXaaaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa!4687! = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\sqrt {{x^2} + 1} + 1}} = \frac{1}{2}\)