Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEaaqa % amaakaaabaGaaGinaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaa % aabeaaaaaaaa!3F18! f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tình’(0)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaqadaqaamaa % laaabaGaamiEaaqaamaakaaabaGaaGinaiabgkHiTiaadIhadaahaa % WcbeqaaiaaikdaaaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqa % aiaac+caaaGccqGH9aqpdaWcaaqaaiaadIhacaGGNaWaaOaaaeaaca % aI0aGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaeyOe % I0IaamiEamaabmaabaWaaOaaaeaacaaI0aGaeyOeI0IaamiEamaaCa % aaleqabaGaaGOmaaaaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaa % caGGVaaaaaGcbaWaaeWaaeaadaGcaaqaaiaaisdacqGHsislcaWG4b % WaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcacaGLPaaadaahaaWc % beqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaadaGcaaqaaiaaisdacq % GHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaGccqGHRaWkdaWc % aaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaadaGcaaqaaiaais % dacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaqabaaaaaGcbaWa % aeWaaeaacaaI0aGaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaO % GaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaaisdaaeaadaqadaqa % aiaaisdacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLOa % GaayzkaaWaaOaaaeaacaaI0aGaeyOeI0IaamiEamaaCaaaleqabaGa % aGOmaaaaaeqaaaaaaaa!71E3! f'\left( x \right) = {\left( {\frac{x}{{\sqrt {4 - {x^2}} }}} \right)^/} = \frac{{x'\sqrt {4 - {x^2}} - x{{\left( {\sqrt {4 - {x^2}} } \right)}^/}}}{{{{\left( {\sqrt {4 - {x^2}} } \right)}^2}}} = \frac{{\sqrt {4 - {x^2}} + \frac{{{x^2}}}{{\sqrt {4 - {x^2}} }}}}{{\left( {4 - {x^2}} \right)}} = \frac{4}{{\left( {4 - {x^2}} \right)\sqrt {4 - {x^2}} }}\)
Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacE % cadaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa % igdaaeaacaaI0aaaaaaa!3C5B! f'\left( 0 \right) = \frac{1}{4}\)