22 câu hỏi 60 phút
Lưu
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
18 câu hỏi 60 phút
22 câu hỏi 90 phút
Cho hàm số \(y = f\left( x \right)\) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\), \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \)
Gọi giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{\ln x}}{x}\) trên nửa khoảng \(\left[ {1;\,{e^2}} \right)\) lần lượt là \(m\) và \(M\). Giá trị của biểu thức \(\ln \left( {m + M} \right)\)bằng
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hình hộp \[ABCD.A'B'C'D'\]. Vectơ nào dưới đây cùng phương với vectơ \[\overrightarrow {AB} \]?
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a = 3\overrightarrow i + 4\overrightarrow j - \overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \)là
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai vectơ \(\vec a\left( { - 1;0;3} \right)\)và \(\vec b\left( {1;2; - 1} \right)\). Tọa độ của vectơ \(\vec c = \vec a - \vec b\) là
Cho hình lăng trụ \(ABC.A'B'C'\), \(M\) là trung điểm của \(BB'\). Đặt \(\overrightarrow {CA} = \vec a\), \(\overrightarrow {CB} = \vec b\), \(\overrightarrow {AA'} = \vec c\). Khẳng định nào sau đây đúng?
Trong không gian \[Oxyz\], cho điểm \[I\left( { - 5;0;5} \right)\] là trung điểm của đoạn \[MN\], biết \[M\left( {1; - 4;7} \right)\]Tìm tọa độ của điểm \[N\]
Trong không gian với hệ toạ độ \(Oxyz\), cho vectơ \(\overrightarrow a = \left( {0; - 1;1} \right),\,\,\overrightarrow b = \left( { - 1;0; - m} \right)\). Có bao nhiêu giá trị thực của \(m\) để góc giữa vectơ \(\overrightarrow a \) và vectơ \(\overrightarrow b \) bằng \(60^\circ \)?
Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:
Mức giá
(triệu đồng/\[{{\rm{m}}^{\rm{2}}}\])
[10;14)
[14;18)
[18;22)
[22;26)
[26;30)
Số khách hàng
54
78
120
45
12
Khoảng biến thiên \(R\) của mẫu số liệu ghép nhóm trên là
Độ lệch chuẩn bằng
Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có bảng biến thiên như hình vẽ
b) Giá trị nhỏ nhất của hàm số là 2.
c) Tâm đối xứng của đồ thị hàm số là \(I\left( {1;2} \right)\)
d) Có 2024 số nguyên \(m\) trên \(\left[ { - 2024;2024} \right]\) để phương trình \(\left| {\frac{{ax + b}}{{cx + d}}} \right| = m\) có hai nghiệm phân biệt.
Cho hàm số \(y = {x^3} - 3m{x^2} + 3\left( {{m^2} - 1} \right)x + 2025\), (tham số \(m\)). Xét tính đúng sai của các khẳng định sau
a) Khi \(m = 1\) thì hàm số đạt cực tiểu tại \(x = 2\)
b) Khi \(m = 1\) thì hàm số đồng biến trên khoảng \(\left( {0;2} \right)\)
c) Khi \(m = 1\) thì hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\) bằng \( - 4\)
d) Có tất cả 1 giá trị nguyên của \(m\) để hàm số có giá trị nhỏ nhất trên khoảng \(\left( {0; + \infty } \right)\)
Trong không gian \(Oxyz\), cho \(\Delta ABC\), biết \(A\left( { - 1;0;3} \right),B\left( {4;2;0} \right),C\left( {3;1; - 3} \right)\)
a) \(\overrightarrow {OA} = - \overrightarrow i + 3\overrightarrow k \)
b) \(G\left( {2;1;0} \right)\) là trọng tâm tam giác \(ABC\)
c) \(M\left( {a;b;c} \right)\) thỏa mãn \(\overrightarrow {AM} = 3\overrightarrow {CB} \). Khi đó \(a + b + c = - 13\)
d) \(M\left( {a;b;c} \right) \in Ox\) sao cho \(BM\) vuông góc với đường thẳng \(AC\). Khi đó \(4{a^2} + {b^2} + {c^2} = 162.\)
Bác tài xế A và bác tài xế B thống kê lại độ dài quãng đường (đơn vị: km) mà hai bác đã lái xe mỗi ngày trong một tháng ở bảng sau:
Độ dài quãng đường (km)
\(\left[ {50;100} \right)\)
\(\left[ {100;150} \right)\)
\(\left[ {150;200} \right)\)
\(\left[ {200;250} \right)\)
\(\left[ {250;300} \right)\)
Số ngày bác tài A lái xe
5
10
9
4
2
Số ngày bác tài B lái xe
8
6
0
a) Khoảng biến thiên về độ dài quãng đường đi mỗi ngày của bác tài A và B ở mẫu số liệu trên bằng nhau.
b) Tứ phân vị thứ nhất của mẫu số liệu về độ dài quãng đường mỗi ngày của bác tài A lớn hơn bác tài B
c) Tứ phân vị thứ ba của mẫu số liệu về quãng đường mỗi ngày của bác tài B thuộc nhóm \(\left[ {150;200} \right)\).
d) Theo khoảng biến thiên thì độ dài quãng đường mỗi ngày của bác tài A phân tán hơn độ dài quãng đường mỗi ngày bác tài B.
Cho hàm số \(f\left( x \right) = 2x - \sqrt {{x^2} - x} \). Tìm số đường tiệm cận xiên của đồ thị hàm số.
Một chất điểm chuyển động theo quy luật \(s\left( t \right) = 6{t^2} - {t^3}\). Vận tốc \(v\left( {{\rm{m/s}}} \right)\) của chuyển động đạt giá trị lớn nhất tại thời điểm \(t\left( {\rm{s}} \right)\) bằng bao nhiêu giây?
Giả sử chi phí tiền xăng \(C\) (đồng) phụ thuộc tốc độ trung bình \(v\left( {{\rm{km/h}}} \right)\) theo công thức: \(C\left( v \right) = \frac{{5400}}{v} + \frac{3}{2}v\left( {0 < v \le 120} \right)\). Tài xế xe tải lái xe với tốc độ trung bình là bao nhiêu để tiết kiệm tiền xăng nhất?
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {1;0;0} \right)\),\(B\left( {0;1;0} \right)\) và \(C\left( {0;0;1} \right)\). Điểm \(M\)là điểm thỏa mãn \(P = M{A^2} + 2M{B^2} - M{C^2}\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất của \(P\)
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm cách điểm xuất phát \(2,5{\rm{\;km}}\) về phía nam và \({\rm{2\;km}}\) về phía đông, đồng thời cách mặt đất \(0,8{\rm{\;km}}\). Chiếc thứ hai nằm cách điểm xuất phát \(1,5{\rm{\;km}}\) về phía bắc và \(3{\rm{ km}}\) về phía tây, đồng thời cách mặt đất \(0,6{\rm{\;km}}\). Người ta cần tìm một vị trí trên mặt đất để tiếp nhiên liệu cho hai khinh khí cầu sao cho tổng khoảng cách từ vị trí đó tới hai khinh khí cầu nhỏ nhất. Giả sử vị trí cần tìm cách địa điểm hai khinh khí cầu bay lên là \(a\,{\rm{km}}\) theo hướng nam và \(b\,{\rm{km}}\) theo hướng tây. Tính tổng \(2a + 3b\)
Thời gian chạy tập luyện cự li \[100{\rm{ }}m\]của một vận động viên được cho trong bảng sau:
Thời gian ( giây)
\(\left[ {10;10,4} \right)\)
\(\left[ {10,4;10,8} \right)\)
\(\left[ {10,8;11,2} \right)\)
\(\left[ {11,2;11,6} \right)\)
\(\left[ {11,6;12,0} \right)\)
Số lần chạy
3
1
Tính phương sai của mẫu số liệu ghép nhóm trên