Trắc nghiệm Đạo hàm cấp hai Toán Lớp 11
-
Câu 1:
Cho hàm số y = x3. Viết tiếp tuyến của đồ thị hàm số đã cho. Biết hoành độ tiếp điểm bằng 2.
A. y = 12x + 1
B. y = 12x - 16
C. y = 6x + 2
D. y = 6x - 12
-
Câu 2:
Cho hàm số y = x3. Viết tiếp tuyến của đồ thị hàm số đã cho. Biết tiếp điểm là M(1; 1).
A. y = 3x + 1
B. y = 3x - 1
C. y = 3x + 2
D. y = 3x - 2
-
Câu 3:
Viết phương trình tiếp tuyến của đồ thị hàm số \(y=\frac{4}{x-1}\) tại điểm có hoành độ x=-1 là:
A. \(y=-x+1\)
B. \(y=-x-3\)
C. \(y=x-3\)
D. \(y=-x+3\)
-
Câu 4:
Phương trình tiếp tuyến của đường cong \(y=x^{3}+3 x^{2}-2\) tại điểm có hoành độ \(x_{0}=1\) là:
A. \(y=9 x-7\)
B. \(y=9 x+7\)
C. \(y=-9 x-7\)
D. \(y=-9 x+7\)
-
Câu 5:
Cho hàm số \(y=\frac{1}{3} x^{3}+x^{2}-2 x+1\) có đồ thị là (C). Phương trình tiếp tuyến của (C) tại điểm \(M\left(1 ; \frac{1}{3}\right)\) là:
A. \(y=3 x-2\)
B. \(y=x-\frac{2}{3}\)
C. \(y=-3 x+2\)
D. \(y=-x+\frac{2}{3}\)
-
Câu 6:
Phương trình tiếp tuyến với đồ thị hàm số \(y=\frac{x+2}{x+1}\) tại điểm có hoành độ x=0 là
A. \(y=x+2\)
B. \(y=-x+2\)
C. Kết quả khác.
D. \(y=-x\)
-
Câu 7:
Cho đồ thị hàm số \((C): y=f(x)=2 x^{3}-3 x^{2}+5\). Từ điểm \(A\left(\frac{19}{12} ; 4\right)\) kẻ được bao nhiêu tiếp tuyến tới (C).
A. 1
B. 2
C. 4
D. 3
-
Câu 8:
Cho hàm số \(f(x)=x^{3}+2 x\) , giá trị của f''(1)
A. 8
B. 6
C. 3
D. 2
-
Câu 9:
Có bao nhiêu điểm thuộc đồ thị hàm số \(y=\frac{2 x-1}{x-1}\) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2018 ?
A. 1
B. 0
C. Vô số.
D. 2
-
Câu 10:
Cho hàm số \(y=x^{3}-3 x^{2}-2\) . Hệ số góc của tiếp tuyến với đồ thị hàm số tại điểm có hoành độ x = 2 là
A. 6
B. 0
C. -6
D. -2
-
Câu 11:
Đạo hàm của hàm số \(f(x)=\sin 2 x\) là:
A. \(f^{\prime}(x)=2 \sin 2 x\)
B. \(f^{\prime}(x)=\cos 2 x . \)
C. \(f^{\prime}(x)=2 \cos 2 x\)
D. \(f^{\prime}(x)=-\frac{1}{2} \cos 2 x\)
-
Câu 12:
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^{2}-x-2\) tại điểm có hoành độ x =1 là:
A. \(2 x-y=0\)
B. \(2 x-y-4=0\)
C. \(x-y-1=0\)
D. \(x-y-3=0\)
-
Câu 13:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaacaWG4bWd % amaaCaaaleqabaWdbiaaiodaaaGccaGGtaIaaG4maiaadIhapaWaaW % baaSqabeaapeGaaGOmaaaakiabgUcaRiaaiEdacaWG4bGaey4kaSIa % aGOmaaaa!4370! y = \frac{1}{3}{x^3}--3{x^2} + 7x + 2\) . Phương trình tiếp tuyến tại A(0;2) là:
A. y = 7x+2
B. y=7x - 2
C. y = -7x + 2
D. y = -7x - 2
-
Câu 14:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % dIhaaeaacaWG4bGaeyOeI0IaaGOmaaaaaaa!3E7C! y = \frac{{{x^2} + x}}{{x - 2}}\). Phương trình tiếp tuyến tại A(1;-2) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaisdapaWaaeWaaeaapeGaamiEaiaa % cobicaaIXaaapaGaayjkaiaawMcaa8qacaGGtaIaaGOmaaaa!3F35! y = -4\left( {x-1} \right)-2\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiwdapaWaaeWaaeaapeGaamiEaiaa % cobicaaIXaaapaGaayjkaiaawMcaa8qacqGHRaWkcaaIYaaaaa!3F61! y = -5\left( {x-1} \right) + 2\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiwdapaWaaeWaaeaapeGaamiEaiaa % cobicaaIXaaapaGaayjkaiaawMcaa8qacaGGtaIaaGOmaaaa!3F36! y = -5\left( {x-1} \right)-2\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiodapaWaaeWaaeaapeGaamiEaiaa % cobicaaIXaaapaGaayjkaiaawMcaa8qacaGGtaIaaGOmaaaa!3F34! y = -3\left( {x-1} \right)-2\)
-
Câu 15:
Cho đường cong \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa % aaaaaaaaWdbiaadoeaa8aacaGLOaGaayzkaaWdbiaacQdacaWG5bGa % eyypa0JaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaa!3D4A! \left( C \right):y = {x^2}\). Phương trình tiếp tuyến của (C) tại điểm M (-1;1) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaikdacaWG4bGaey4kaSIaaGymaaaa % !3C24! y = -2x + 1\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaGOmaiaadIhacqGHRaWkcaaIXaaaaa!3B6D! y = 2x + 1\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaikdacaWG4bGaai4eGiaaigdaaaa!3BF9! y = -2x-1\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaGOmaiaadIhacaGGtaIaaGymaaaa!3B42! y = 2x-1\)
-
Câu 16:
Phương trình tiếp tuyến của đồ thị của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaamiEa8aadaqadaqaa8qacaaIZaGaai4eGiaa % dIhaa8aacaGLOaGaayzkaaWaaWbaaSqabeaapeGaaGOmaaaaaaa!3E35! y = x{\left( {3-x} \right)^2}\) tại điểm có hoành độ x = 2 là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiodacaWG4bGaey4kaSIaaGioaaaa % !3C2C! y = -3x + 8\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiodacaWG4bGaey4kaSIaaGioaaaa % !3C2C! y = -3x + 6\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaG4maiaadIhacaGGtaIaaGioaaaa!3B4A! y = 3x-8\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaG4maiaadIhacaGGtaIaaGOnaaaa!3B48! y = 3x-6\)
-
Câu 17:
Phương trình tiếp tuyến của đồ thị hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZdamaabmaabaWdbiaadIhacqGHRaWkcaaIXaaa % paGaayjkaiaawMcaamaaCaaaleqabaWdbiaaikdaaaGcpaWaaeWaae % aapeGaamiEaiaacobicaaIYaaapaGaayjkaiaawMcaaaaa!4192! y = {\left( {x + 1} \right)^2}\left( {x-2} \right)\) tại điểm có hoành độ x = 2 là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaiIdacaWG4bGaey4kaSIaaGinaaaa % !3C2D! y = -8x + 4\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaGyoaiaadIhacqGHRaWkcaaIXaGaaGioaaaa % !3C36! y = 9x + 18\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaai4eGiaaisdacaWG4bGaey4kaSIaaGinaaaa % !3C29! y = -4x + 4\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0JaaGyoaiaadIhacqGHsislcaaIXaGaaGioaaaa % !3C41! y = 9x - 18\)
-
Câu 18:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacohacaGGPbGaaiOB % amaaCaaaleqabaGaaG4maaaakiaadIhacqGHRaWkcaWG4bWaaWbaaS % qabeaacaaIYaaaaaaa!41FC! f\left( x \right) = {\sin ^3}x + {x^2}\). Giá trị \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaga % WaaeWaaeaadaWcaaqaaiabec8aWbqaaiaaikdaaaaacaGLOaGaayzk % aaaaaa!3AFE! f''\left( {\frac{\pi }{2}} \right)\) bằng
A. 0
B. -1
C. -2
D. -5
-
Câu 19:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEaiab % gUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaa!3F78! f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị f’’(0) bằng
A. 3
B. 6
C. 12
D. 24
-
Câu 20:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWc % aaqaaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca % WG4bGaey4kaSIaaGOmaaqaaiaadIhacqGHsislcaaIXaaaaaaa!457E! y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGjbaacaGLOaGaayzkaaGaaiOoaiqadMhagaqbaiabg2da9iqadAga % gaqbamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa!3E96! \left( I \right):y' = f'\left( x \right)\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaey % OeI0IaaGymaiabgkHiTmaalaaabaGaaGOmaaqaaiaacIcacaWG4bGa % eyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdaaaaaaOGaeyipaW % JaaGimaiaacYcacqGHaiIicaWG4bGaeyiyIKRaaGymaaaa!4609! = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGjbGaamysaaGaayjkaiaawMcaaiaacQdaceWG5bGbayaacqGH9aqp % ceWGMbGbayaadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaa!3F66! \left( {II} \right):y'' = f''\left( x \right)\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaI0aaabaGaaiikaiaadIhacqGHsislcaaIXaGaaiykamaa % CaaaleqabaGaaGOmaaaaaaGccqGH+aGpcaaIWaGaaiilaiabgcGiIi % aadIhacqGHGjsUcaaIXaaaaa!437A! = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\)
Mệnh đề nào đúng
A. Chỉ (I) đúng. .
B. Chỉ (II) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
-
Câu 21:
Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaaga % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI % YaGaci4CaiaacMgacaGGUbGaamiEaaqaaiGacogacaGGVbGaai4Cam % aaCaaaleqabaGaaG4maaaakiaadIhaaaaaaa!43DD! f''\left( x \right) = \frac{{2\sin x}}{{{{\cos }^3}x}}\) thì f(x) bằng
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaci4yaiaac+gacaGGZbGaamiEaaaaaaa!3A8E! \frac{1}{{\cos x}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaci4yaiaac+gacaGGZbGaamiEaaaaaaa!3A8E! -\frac{1}{{\cos x}}\)
C. cotx
D. tanx
-
Câu 22:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcqGH % sisldaWcaaqaaiaaigdaaeaacaWG4baaaaaa!3F24! y = f\left( x \right) = - \frac{1}{x}\). Xét hai mệnh đề :
\(\left( I \right):y'' = f''\left( x \right) = \frac{2}{{{x^3}}}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGjbGaamysaaGaayjkaiaawMcaaiaacQdaceWG5bGbaibacqGH9aqp % ceWGMbGbaibadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcq % GHsisldaWcaaqaaiaaiAdaaeaacaWG4bWaaWbaaSqabeaacaaI0aaa % aaaaaaa!4429! \left( {II} \right):y''' = f'''\left( x \right) = - \frac{6}{{{x^4}}}\)
Mệnh đề nào đúng
A. Chỉ (I) đúng.
B. Chỉ (II) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
-
Câu 23:
Cho hàm số y = sin2x. Chọn khẳng định đúng
A. 4y - y' = 0
B. 4y + y'' = 0
C. y = y'tan2x
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaGaaGOmaaaakiabg2da9maabmaabaGabmyEayaafaaacaGL % OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaGinaaaa!3E35! {y^2} = {\left( {y'} \right)^2} = 4\)
-
Câu 24:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaeyOeI0IaaGOmaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaIZaGaamiEaaqaaiaaigdacqGHsislcaWG4baaaa % aa!40E2! y = \frac{{ - 2{x^2} + 3x}}{{1 - x}}\) có đạo hàm cấp 2 bằng :
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0JaaGOmaiabgUcaRmaalaaabaGaaGymaaqaamaabmaabaGa % aGymaiabgkHiTiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaaaa!3F84! y'' = 2 + \frac{1}{{{{\left( {1 - x} \right)}^2}}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0Ia % amiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa!3DE8! y'' = \frac{2}{{{{\left( {1 - x} \right)}^3}}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacqGHsislcaaIYaaabaWaaeWaaeaacaaIXaGa % eyOeI0IaamiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaa % aaaa!3ED5! y'' = \frac{{ - 2}}{{{{\left( {1 - x} \right)}^3}}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIYaaabaWaaeWaaeaacaaIXaGaeyOeI0Ia % amiEaaGaayjkaiaawMcaamaaCaaaleqabaGaaGinaaaaaaaaaa!3DE9! y'' = \frac{2}{{{{\left( {1 - x} \right)}^4}}}\)
-
Câu 25:
Cho hàm số y = sinx. Chọn câu sai.
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % Gaeyypa0Jaci4CaiaacMgacaGGUbWaaeWaaeaacaWG4bGaey4kaSYa % aSaaaeaacqaHapaCaeaacaaIYaaaaaGaayjkaiaawMcaaaaa!40CC! y' = \sin \left( {x + \frac{\pi }{2}} \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0Jaci4CaiaacMgacaGGUbWaaeWaaeaacaWG4bGaey4kaSIa % eqiWdahacaGLOaGaayzkaaaaaa!4001! y'' = \sin \left( {x + \pi } \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaasa % Gaeyypa0Jaci4CaiaacMgacaGGUbWaaeWaaeaacaWG4bGaey4kaSYa % aSaaaeaacaaIZaGaeqiWdahabaGaaGOmaaaaaiaawIcacaGLPaaaaa % a!4196! y''' = \sin \left( {x + \frac{{3\pi }}{2}} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaWaaeWaaeaacaaI0aaacaGLOaGaayzkaaaaaOGaeyypa0Ja % ci4CaiaacMgacaGGUbWaaeWaaeaacaaIYaGaeqiWdaNaeyOeI0Iaam % iEaaGaayjkaiaawMcaaaaa!4339! {y^{\left( 4 \right)}} = \sin \left( {2\pi + x} \right)\)
-
Câu 26:
Hàm số y = tanx có đạo hàm cấp 2 bằng :
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaci4CaiaacMgacaGGUbGa % amiEaaqaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaG4maaaaki % aadIhaaaaaaa!4256! y'' = - \frac{{2\sin x}}{{{{\cos }^3}x}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWaaWba % aSqabeaacaaIYaaaaOGaamiEaaaaaaa!3D92! y'' = \frac{1}{{{{\cos }^2}x}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGG % ZbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaaaaaa!3E7F! y'' = - \frac{1}{{{{\cos }^2}x}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIYaGaci4CaiaacMgacaGGUbGaamiEaaqa % aiGacogacaGGVbGaai4CamaaCaaaleqabaGaaG4maaaakiaadIhaaa % aaaa!4169! y'' = \frac{{2\sin x}}{{{{\cos }^3}x}}\)
-
Câu 27:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maabmaabaGaaGOmaiaadIhacqGHRaWkcaaI1aaacaGLOaGaayzk % aaWaaWbaaSqabeaacaaI1aaaaaaa!3DC6! y = {\left( {2x + 5} \right)^5}\) có đạo hàm cấp 3 bằng :
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaasa % Gaeyypa0JaaGioaiaaicdadaqadaqaaiaaikdacaWG4bGaey4kaSIa % aGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaa!3F59! y''' = 80{\left( {2x + 5} \right)^3}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaasa % Gaeyypa0JaaGinaiaaiIdacaaIWaWaaeWaaeaacaaIYaGaamiEaiab % gUcaRiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa!4016! y''' = 480{\left( {2x + 5} \right)^2}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaasa % Gaeyypa0JaeyOeI0IaaGinaiaaiIdacaaIWaWaaeWaaeaacaaIYaGa % amiEaiabgUcaRiaaiwdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaa!4103! y''' = - 480{\left( {2x + 5} \right)^2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaasa % Gaeyypa0JaeyOeI0IaaGioaiaaicdadaqadaqaaiaaikdacaWG4bGa % ey4kaSIaaGynaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaa % a!4046! y''' = - 80{\left( {2x + 5} \right)^3}\)
-
Câu 28:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhadaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIXaaaleqaaaaa!3C9C! y = x\sqrt {{x^2} + 1} \) có đạo hàm cấp bằng :
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiEamaaCaaaleqabaGa % aG4maaaakiabgUcaRiaaiodacaWG4baabaWaaeWaaeaacaaIXaGaey % 4kaSIaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaa % kaaabaGaaGymaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaabe % aaaaaaaa!46F3! y'' = - \frac{{2{x^3} + 3x}}{{\left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} }}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIYaGaamiEamaaCaaaleqabaGaaGOmaaaa % kiabgUcaRiaaigdaaeaadaGcaaqaaiaaigdacqGHRaWkcaWG4bWaaW % baaSqabeaacaaIYaaaaaqabaaaaaaa!3FF0! y'' = \frac{{2{x^2} + 1}}{{\sqrt {1 + {x^2}} }}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaIYaGaamiEamaaCaaaleqabaGaaG4maaaa % kiabgUcaRiaaiodacaWG4baabaWaaeWaaeaacaaIXaGaey4kaSIaam % iEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaakaaabaGa % aGymaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaabeaaaaaaaa!4606! y'' = \frac{{2{x^3} + 3x}}{{\left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} }}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamiEamaaCaaaleqabaGa % aGOmaaaakiabgUcaRiaaigdaaeaadaGcaaqaaiaaigdacqGHRaWkca % WG4bWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa!40DD! y'' = - \frac{{2{x^2} + 1}}{{\sqrt {1 + {x^2}} }}\)
-
Câu 29:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaaeiiaiabg2da98aadaWcaaqaaiaadIhadaahaaWcbeqa % aiaaikdaaaGccqGHRaWkcaWG4bGaey4kaSIaaGymaaqaaiaadIhacq % GHRaWkcaaIXaaaaaaa!40E0! y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaGaaiikaiaaiwdacaGGPaaaaOGaeyypa0JaeyOeI0YaaSaa % aeaacaaIXaGaaGOmaiaaicdaaeaacaGGOaGaamiEaiabgUcaRiaaig % dacaGGPaWaaWbaaSqabeaacaaI2aaaaaaaaaa!4255! {y^{(5)}} = - \frac{{120}}{{{{(x + 1)}^6}}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaGaaiikaiaaiwdacaGGPaaaaOGaeyypa0ZaaSaaaeaacaaI % XaGaaGOmaiaaicdaaeaacaGGOaGaamiEaiabgUcaRiaaigdacaGGPa % WaaWbaaSqabeaacaaI2aaaaaaaaaa!4168! {y^{(5)}} = \frac{{120}}{{{{(x + 1)}^6}}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaGaaiikaiaaiwdacaGGPaaaaOGaeyypa0ZaaSaaaeaacaaI % XaaabaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykamaaCaaaleqaba % GaaGOnaaaaaaaaaa!3FF2! {y^{(5)}} = \frac{1}{{{{(x + 1)}^6}}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa % aaleqabaGaaiikaiaaiwdacaGGPaaaaOGaeyypa0JaeyOeI0YaaSaa % aeaacaaIXaaabaGaaiikaiaadIhacqGHRaWkcaaIXaGaaiykamaaCa % aaleqabaGaaGOnaaaaaaaaaa!40DF! {y^{(5)}} = - \frac{1}{{{{(x + 1)}^6}}}\)
-
Câu 30:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZdamaakaaabaGaaGOmaiaadIhacqGHRaWkcaaI % 1aaaleqaaaaa!3B9C! y = \sqrt {2x + 5} \) có đạo hàm cấp hai bằng:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaiikaiaaikdacaWG4bGa % ey4kaSIaaGynaiaacMcadaGcaaqaaiaaikdacaWG4bGaey4kaSIaaG % ynaaWcbeaaaaaaaa!4102! y'' = \frac{1}{{(2x + 5)\sqrt {2x + 5} }}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaGaamiE % aiabgUcaRiaaiwdaaSqabaaaaaaa!3C4F! y'' = \frac{1}{{\sqrt {2x + 5} }}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaiikaiaaikda % caWG4bGaey4kaSIaaGynaiaacMcadaGcaaqaaiaaikdacaWG4bGaey % 4kaSIaaGynaaWcbeaaaaaaaa!41EF! y'' = - \frac{1}{{(2x + 5)\sqrt {2x + 5} }}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaWaaOaaaeaacaaI % YaGaamiEaiabgUcaRiaaiwdaaSqabaaaaaaa!3D3C! y'' = - \frac{1}{{\sqrt {2x + 5} }}\)
-
Câu 31:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0ZdamaabmaabaWdbiaadIhapaWaaWbaaSqabeaa % peGaaGOmaaaakiabgUcaRiaabccacaaIXaaapaGaayjkaiaawMcaam % aaCaaaleqabaWdbiaaiodaaaaaaa!3F17! y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\) có đạo hàm cấp ba là:
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaceWG5bGbauGbauGbauaacqGH9aqpcaqGGaGaaGymaiaaikdapaWa % aeWaaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaS % Iaaeiiaiaaigdaa8aacaGLOaGaayzkaaaaaa!4059! y''' = {\rm{ }}12\left( {{x^2} + {\rm{ }}1} \right)\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaceWG5bGbauGbauGbauaacqGH9aqpcaqGGaGaaGOmaiaaisdapaWa % aeWaaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaS % Iaaeiiaiaaigdaa8aacaGLOaGaayzkaaaaaa!405C! y''' = {\rm{ }}24\left( {{x^2} + {\rm{ }}1} \right)\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaceWG5bGbauGbauGbauaacqGH9aqpcaqGGaGaaGOmaiaaisdapaWa % aeWaaeaapeGaaGynaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaki % abgUcaRiaabccacaaIZaaapaGaayjkaiaawMcaaaaa!411D! y''' = {\rm{ }}24\left( {5{x^2} + {\rm{ }}3} \right)\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qaceWG5bGbauGbauGbauaacqGH9aqpcaqGGaGaai4eGiaaigdacaaI % YaWdamaabmaabaWdbiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaki % abgUcaRiaabccacaaIXaaapaGaayjkaiaawMcaaaaa!4110! y''' = {\rm{ }}-12\left( {{x^2} + {\rm{ }}1} \right)\)
-
Câu 32:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaamiEaaqaaiaadIhacqGHsislcaaIYaaaaaaa!3BAA! y = \frac{x}{{x - 2}}\) có đạo hàm cấp hai là:
A. y'' = 0
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0ZaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG4bGaeyOe % I0IaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa!3DF2! y'' = \frac{1}{{{{\left( {x - 2} \right)}^2}}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0JaeyOeI0YaaSaaaeaacaaI0aaabaWaaeWaaeaacaWG % 4bGaeyOeI0IaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa % aaaaaaaa!3EE2! y'' = - \frac{4}{{{{\left( {x - 2} \right)}^2}}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafy % aafaGaeyypa0ZaaSaaaeaacaaI0aaabaWaaeWaaeaacaWG4bGaeyOe % I0IaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa!3DF6! y'' = \frac{4}{{{{\left( {x - 2} \right)}^3}}}\)
-
Câu 33:
Cho hàm số \(y=\sin ^{2} 2 x .\,\, Tính \,\,y^{(4)}\left(\frac{\pi}{6}\right)\) bằng:
A. 64
B. -64
C. \(64 \sqrt{3}\)
D. \(-64 \sqrt{3}\)
-
Câu 34:
Cho hàm số \(y=\frac{1}{x-3} .\) Khi dó :
A. \(y^{\prime \prime \prime}(1)=\frac{3}{8}\)
B. \(y^{\prime \prime \prime}(1)=\frac{1}{8}\)
C. \(y^{\prime \prime \prime}(1)=-\frac{3}{8}\)
D. \(y^{\prime \prime \prime}(1)=-\frac{1}{4}\)
-
Câu 35:
Cho hàm số \(f(x)=5(x+1)^{3}+4(x+1) .\)Tập nghiệm của phương trình \(f^{\prime \prime}(x)=0\) là
A. \([-1 ; 2]\)
B. \((-\infty ; 0]\)
C. \(\{-1\}\)
D. \(\varnothing\)
-
Câu 36:
Cho hàm số \(f(x)=\sin ^{3} x+x^{2}\). Giá trị \(f^{\prime \prime}\left(\frac{\pi}{2}\right)\) bằng
A. 0
B. -2
C. -1
D. 5
-
Câu 37:
Cho hàm số \(f(x)=(x+1)^{3}\). Giá trị \(f^{\prime \prime}(0)\) bằng
A. 3
B. 6
C. 12
D. 24
-
Câu 38:
Nếu \(f^{\prime \prime}(x)=\frac{2 \sin x}{\cos ^{3} x}\) thì f(x) bằng
A. \(\frac{1}{\cos x}\)
B. \(-\frac{1}{\cos x}\)
C. \(\cot x\)
D. \(\tan x\)
-
Câu 39:
Cho hàm số y=sin 2 x . Chọn khằng định đúng.
A. \(4 y-y^{\prime}=0\)
B. \(4 y+y^{\prime \prime}=0\)
C. \(y=y^{\prime} \tan 2 x\)
D. \(y^{2}=\left(y^{\prime}\right)^{2}=4\)
-
Câu 40:
Hàm số \(y=f(x)=\cos \left(2 x-\frac{\pi}{3}\right) .\) Phương trình \(f^{(4)}(x)=-8\) có nghiệm \(x \in\left[0 ; \frac{\pi}{2}\right]\) là:
A. \(x=\frac{\pi}{2}\)
B. \(x=0\,\, và \,x=\frac{\pi}{6}\)
C. \(x=0\,\, và \,\,x=\frac{\pi}{3}\)
D. \(x=0\,\, và \,\,x=\frac{\pi}{2}\)
-
Câu 41:
Hàm số \(y=\frac{-2 x^{2}+3 x}{1-x}\) có đạo hàm cấp 2 bằng
A. \(y^{\prime \prime}=2+\frac{1}{(1-x)^{2}}\)
B. \(y^{\prime \prime}=\frac{2}{(1-x)^{3}}\)
C. \(y^{\prime \prime}=\frac{-2}{(1-x)^{3}}\)
D. \(y^{\prime \prime}=\frac{2}{(1-x)^{4}}\)
-
Câu 42:
Cho hàm só y=sin x . Chọn câu sai.
A. \(y^{\prime}=\sin \left(x+\frac{\pi}{2}\right)\)
B. \(y^{\prime \prime}=\sin (x+\pi)\)
C. \(y^{\prime \prime \prime}=\sin \left(x+\frac{3 \pi}{2}\right)\)
D. \(y^{(4)}=\sin (2 \pi-x)\)
-
Câu 43:
Hàm số y=tan xcó đạo hàm cấp 2 bằng :
A. \(y^{\prime \prime}=-\frac{2 \sin x}{\cos ^{3} x}\)
B. \(y^{\prime \prime}=\frac{1}{\cos ^{2} x}\)
C. \(y^{\prime \prime}=-\frac{1}{\cos ^{2} x}\)
D. \(y^{\prime \prime}=\frac{2 \sin x}{\cos ^{3} x}\)
-
Câu 44:
Hàm số \(y=(2 x+5)^{5}\) có đạo hàm cấp 3 bằng :
A. \(y^{\prime \prime \prime}=80(2 x+5)^{3}\)
B. \(y^{\prime \prime \prime}=480(2 x+5)^{2}\)
C. \(y^{\prime \prime \prime}=-480(2 x+5)^{2}\)
D. \(y^{\prime \prime \prime}=-80(2 x+5)^{3}\)
-
Câu 45:
Hàm sô\(y=x \sqrt{x^{2}+1}\) có đạo hàm cấp 2 bằng :
A. \(y^{\prime \prime}=-\frac{2 x^{3}+3 x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\)
B. \(y^{\prime \prime}=\frac{2 x^{2}+1}{\sqrt{1+x^{2}}}\)
C. \(y^{\prime \prime}=\frac{2 x^{3}+3 x}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}\)
D. \(y^{\prime \prime}=-\frac{2 x^{2}+1}{\sqrt{1+x^{2}}}\)
-
Câu 46:
Hàm số \(y=\frac{x^{2}+x+1}{x+1}\) có đạo hàm cấp 5 bằng:
A. \(y^{(5)}=-\frac{120}{(x+1)^{6}}\)
B. \(y^{(5)}=\frac{120}{(x+1)^{6}}\)
C. \(y^{(5)}=\frac{1}{(x+1)^{6}}\)
D. \(y^{(5)}=-\frac{1}{(x+1)^{6}}\)
-
Câu 47:
Hàm số \(y=\sqrt{2 x+5}\) có đạo hàm cấp hai bằng:
A. \(y^{\prime \prime}=\frac{1}{(2 x+5) \sqrt{2 x+5}}\)
B. \(y^{\prime \prime}=\frac{1}{\sqrt{2 x+5}}\)
C. \(y^{\prime \prime}=-\frac{1}{(2 x+5) \sqrt{2 x+5}}\)
D. \(y^{\prime \prime}=-\frac{1}{\sqrt{2 x+5}}\)
-
Câu 48:
Hàm số \(y=\left(x^{2}+1\right)^{3}\) có đạo hàm cấp ba là:
A. \(y^{\prime \prime \prime}=12\left(x^{2}+1\right)\)
B. \(y^{\prime \prime \prime}=24\left(x^{2}+1\right)\)
C. \(y^{\prime \prime \prime}=24\left(5 x^{2}+3\right)\)
D. \(y^{\prime \prime \prime}=-12\left(x^{2}+1\right)\)
-
Câu 49:
Hàm số\(y=\frac{x}{x-2}\) có đạo hàm cấp hai là:
A. \(y^{\prime \prime}=0\)
B. \(y^{\prime \prime}=\frac{1}{(x-2)^{2}}\)
C. \(y^{\prime \prime}=\frac{4}{(x-2)^{2}}\)
D. \(y^{\prime \prime}=\frac{4}{(x-2)^{3}}\)
-
Câu 50:
Cho hàm số \(y=\sin 2 x\). Tính \(y^{\prime \prime \prime}\left(\frac{\pi}{3}\right), y^{(4)}\left(\frac{\pi}{4}\right)\)
A. 4 và 16
B. 5 và 17
C. 6 và 18
D. 7 và 19