Cho phương trình \(m\sin x + (m + 1)cosx = {m \over {\cos x}}\). Tìm các giá trị của m sao cho phương trình đã cho có nghiệm.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐKXĐ của phương trình là \(\cos x \ne 0.\) Với điều kiện đó, chia hai vế cho \(\cos x\) và đặt \(\tan x = t\) ta được phương trình.
\(m{t^2} - mt - 1 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)
Do phương trình \(\tan x = t\) có nghiệm với mọi t nên phương trình đã cho có nghiệm khi và chỉ khi (1) có nghiệm.
+) Xét m = 0 phương trình vô nghiêm.
+) Xét \(m\ne 0\) ta có (1) có nghiệm khi và chỉ khi:
\(\Delta \ge 0 \Leftrightarrow {m^2} + 4m \ge 0 \Leftrightarrow \left[ \matrix{
m \ge 0 \hfill \cr
m \le - 4 \hfill \cr} \right.\)
Kết hợp với điều kiện \(m\ne 0\) thì \(m \le - 4\) hoặc \(m > 0\) phương trình đã cho có nghiệm.