Nghiệm của phương trình \(\sin 4x\sin 5x + \sin 4x\sin 3x - \sin 2x\sin x = 0\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\eqalign{
& \sin 4x\sin 5x + \sin 4x\sin 3x - \sin 2x\sin x = 0 \cr
& \Leftrightarrow \sin 4x\sin 5x \cr&+ {1 \over 2}\left( {\cos x - \cos 7x + \cos 3x - \cos x} \right) = 0 \cr
& \Leftrightarrow \sin 4x\sin 5x + \sin 5x\sin 2x = 0\cr& \Leftrightarrow \sin 5x(\sin 4x + \sin 2x) = 0 \cr} \)
\(\begin{array}{l}
\Leftrightarrow \sin 5x.2\sin 3x\cos x = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin 5x = 0\\
\sin 3x = 0\\
\cos x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
5x = k\pi \\
3x = k\pi \\
x = \frac{\pi }{2} + k\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{k\pi }}{5}\\
x = \frac{{k\pi }}{3}\\
x = \frac{\pi }{2} + k\pi
\end{array} \right.
\end{array}\)