Phương trình \({\sin ^4}\left( {x + {\pi \over 4}} \right) = {1 \over 4} + {\cos ^2}x - {\cos ^4}x\) có nghiệm là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\eqalign{
& {\sin ^4}\left( {x + {\pi \over 4}} \right) = {1 \over 4} + {\cos ^2}x - {\cos ^4}x\cr& \Leftrightarrow {1 \over 4}{\left[ {1 - \cos \left( {2x + {\pi \over 2}} \right)} \right]^2} = {1 \over 4} + {\cos ^2}x - {\cos ^4}x \cr
& \Leftrightarrow {1 \over 4}{\left( {1 + \sin 2x} \right)^2} = {1 \over 4} + {\cos ^2}x\left( {1 - {{\cos }^2}x} \right) \cr
& \Leftrightarrow {1 \over 2}\sin 2x + {1 \over 4}{\sin ^2}2x = {1 \over 4}\left( {1 + \cos 2x} \right)\left( {1 - \cos 2x} \right) \cr
& \Leftrightarrow {1 \over 2}\sin 2x + {1 \over 4}{\sin ^2}2x = {1 \over 4}\left( {1 - {{\cos }^2}2x} \right) \cr} \)
\(\begin{array}{l}
\Leftrightarrow 2\sin 2x + {\sin ^2}2x = 1 - {\cos ^2}2x\\
\Leftrightarrow 2\sin 2x + {\sin ^2}2x = {\sin ^2}2x\\
\Leftrightarrow \sin 2x = 0\\
\Leftrightarrow 2x = k\pi \\
\Leftrightarrow x = \frac{{k\pi }}{2}
\end{array}\)
Vậy \(x = {{k\pi } \over 2}\).