Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lê Thị Riêng lần 2
-
Câu 1:
Cho tập hợp A gồm 12 phần tử. Số tập con gồm 4 phần tử của tập hợp A là
A. \(A_{12}^8.\)
B. \(C_{12}^4\)
C. 4!
D. \(A_{12}^4\)
-
Câu 2:
Cho cấp số cộng \(\left( {{u}_{n}} \right)\), có \({{u}_{1}}=-2,{{u}_{4}}=4.\) Số hạng \({{u}_{6}}\) là
A. 8
B. 6
C. 10
D. 12
-
Câu 3:
Cho hàm số \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình bên. Mệnh đề nào sau đây sai?
A. Hàm số đồng biến trên khoảng \(\left( -\infty ;0 \right)\)
B. Hàm số đồng biến trên khoảng \(\left( -\infty ;1 \right).\)
C. Hàm số nghịch biến trên khoảng \(\left( 0;1 \right).\)
D. Hàm số đồng biến trên khoảng \(\left( 1;+\infty \right).\)
-
Câu 4:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
A. Đồ thị hàm số y = f(x) có hai điểm cực trị.
B. Đồ thị hàm số y = f(x) có ba điểm cực trị.
C. Đồ thị hàm số y = f(x) có bốn điểm cực trị.
D. Đồ thị hàm số y = f(x) có một điểm cực trị.
-
Câu 5:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ. Hỏi hàm số có bao nhiêu điểm cực trị?
A. Có ba điểm
B. Có bốn điểm.
C. Có một điểm.
D. Có hai điểm.
-
Câu 6:
Phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-2x}{-x+2}\) lần lượt là
A. x = - 2;y = - 2.
B. x = 2;y = - 2.
C. x = - 2;y = 2
D. x = 2;y = 2
-
Câu 7:
Đồ thị bên dưới đây là của hàm số nào?
A. \(y = - \frac{{{x^3}}}{3} + {x^2} + 1.\)
B. \(y = - {x^3} - 3{x^2} + 1.\)
C. \(y = 2{x^3} - 6{x^2} + 1.\)
D. \(y = {x^3} - 3{x^2} + 1.\)
-
Câu 8:
Tọa độ giao điểm M của đồ thị hàm số \(y={{x}^{3}}+3x-4\) và đường thẳng y=2x-4.
A. \(M\left( {0; - 4} \right)\)
B. \(M\left( { - 3;0} \right)\)
C. \(M\left( { - 1; - 6} \right)\)
D. \(M\left( {1;0} \right)\)
-
Câu 9:
Với các số thực dương x,y. Ta có \({{8}^{x}},{{4}^{4}},2\) theo thứ tự lập thành một cấp số nhân và các số \({{\log }_{2}}45,{{\log }_{2}}y,{{\log }_{2}}x\) theo thứ tự lập thành cấp số cộng. Khi đó y bằng
A. 225
B. 15
C. 105
D. \(\sqrt {105} .\)
-
Câu 10:
Đạo hàm bậc nhất của hàm số \(y={{e}^{2x}}+3\) là
A. \(y' = 2.{e^{2x}}.\)
B. \(y' = {e^{2x}}.\)
C. \(y' = 2{e^{2x}} + 3.\)
D. \(y' = {e^{2x}} + 3.\)
-
Câu 11:
Cho đẳng thức \(\frac{\sqrt[3]{{{a}^{2}}\sqrt{a}}}{{{a}^{3}}}={{a}^{\alpha }},0<a\ne 1.\) Khi đó \(\alpha \) thuộc khoảng nào?
A. (-1;0)
B. (0;1)
C. (-2;-1)
D. (-3;-2)
-
Câu 12:
Nghiệm của phương trình \({{\log }_{2}}\left( 3x-8 \right)=2\) là
A. x = 4
B. x = -4
C. \(x = - \frac{4}{3}.\)
D. x = 12
-
Câu 13:
Tìm nghiệm của phương trình \({{3}^{x-1}}=27.\)
A. x = 9
B. x = 3
C. x = 4
D. x = 10
-
Câu 14:
Họ nguyên hàm của hàm số \(f\left( x \right)=\sin 2x\) là
A. \(F\left( x \right) = - \frac{1}{2}\cos 2x + C.\)
B. \(F\left( x \right) = \cos 2x + C\)
C. \(F\left( x \right) = \frac{1}{2}\cos 2x + C\)
D. \(F\left( x \right) = - \cos 2x + C\)
-
Câu 15:
Tính nguyên hàm \(A=\int\limits_{{}}^{{}}{\frac{1}{x\ln x}dx}\) bằng cách đặt t=ln x. Mệnh đề nào dưới đây đúng?
A. \(A = \int\limits_{}^{} {dt} \)
B. \(\int\limits_{}^{} {\frac{1}{{{t^2}}}dt} \)
C. \(\int\limits_{}^{} {tdt} .\)
D. \(\int\limits_{}^{} {\frac{1}{t}dt} \)
-
Câu 16:
Biết \(f\left( x \right)\) là hàm số liên tục trên \(\mathbb{R}\), a là số thực thỏa mãn \(0<a<\pi \) và \(\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{a}^{\pi }{f\left( x \right)dx}=1.\) Tính \(\int\limits_{0}^{\pi }{f\left( x \right)dx}.\)
A. 0
B. 2
C. \(\frac{1}{2}\)
D. 1
-
Câu 17:
Tích phân \(I=\int\limits_{0}^{\frac{\pi }{3}}{\sin xdx}\) bằng
A. \(\frac{{\sqrt 3 }}{2}\)
B. \(\frac{{-\sqrt 3 }}{2}\)
C. \(\frac{1}{2}\)
D. \(\frac{-1}{2}\)
-
Câu 18:
Cho số phức \(z=2-3i.\) Số phức liên hợp của \(z\) là
A. \(\overline z = - 2 - 3i.\)
B. \(\overline z = - 2 + 3i.\)
C. \(\overline z = 2 + 3i.\)
D. \(\overline z = 2 - 3i.\)
-
Câu 19:
Số nào trong các số phức sau là số thực?
A. \(\left( {1 + 2i} \right) + \left( { - 1 + 2i} \right)\)
B. \(\left( {3 + 2i} \right) + \left( {3 - 2i} \right)\)
C. \(\left( {5 + 2i} \right) - \left( {\sqrt 5 - 2i} \right)\)
D. \(\left( {\sqrt 3 - 2i} \right) - \left( {\sqrt 3 + 2i} \right).\)
-
Câu 20:
Trong mặt phẳng tọa độ Oxyz, cho điểm \(M\left( -2;1 \right).\) Hỏi điểm M là điểm biểu diễn của số phức nào sau đây?
A. z = 2 - i.
B. z = - 2 + i
C. z = - 1 + 2i
D. z = 1 - 2i.
-
Câu 21:
Thể tích của khối chóp có diện tích mặt đáy bằng B, chiều cao bằng h được tính bởi công thức
A. \(V = \frac{1}{3}Bh.\)
B. V = Bh
C. \(V = \frac{1}{2}Bh\)
D. V = 3Bh
-
Câu 22:
Công thức tính thể tích khối chóp có diện tích đáy B và chiều cao h là
A. \(V = \frac{4}{3}Bh.\)
B. \(V = \frac{1}{3}Bh.\)
C. V = Bh.
D. \(V = \frac{1}{2}Bh.\)
-
Câu 23:
Thể tích của khối nón có chiều cao h và bán kính đáy r là
A. \(V = \pi {r^2}h.\)
B. \(V = \pi rh.\)
C. \(V = \frac{1}{3}\pi {r^2}h.\)
D. \(V = \frac{1}{3}\pi r{h^2}.\)
-
Câu 24:
Cho khối nón xoay có chiều cao và bán kính đáy cùng bằng a. Khi đó thể tích khối nón là
A. \(\frac{2}{3}\pi {a^3}\)
B. \(\pi {a^3}\)
C. \(\frac{1}{3}\pi {a^3}\)
D. \(\frac{4}{3}\pi {a^3}\)
-
Câu 25:
Cho các véc-tơ \(\overrightarrow{a}=\left( 1;2;3 \right),\overrightarrow{b}=\left( -2;4;1 \right),\overrightarrow{c}=\left( -1;3;4 \right).\) Véc-tơ \(\overrightarrow{v}=2\overrightarrow{a}-3\overrightarrow{b}+5\overrightarrow{c}\) có tọa độ là
A. \(\overrightarrow v = \left( {23;7;3} \right).\)
B. \(\overrightarrow v = \left( {7;23;3} \right).\)
C. \(\overrightarrow v = \left( {3;7;23} \right).\)
D. \(\overrightarrow v = \left( {7;3;23} \right).\)
-
Câu 26:
Trong không gian với hệ tọa độ Oxyz cho mặt cầu có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-6z+9=0.\)
Tìm tọa độ tâm I và độ dài bán kính R của mặt cầu.
A. \(I\left( -1;2;-3 \right)\) và \(R=\sqrt{5}.\)
B. \(I\left( 1;-2;3 \right)\) và \(R=\sqrt{5}\)
C. \(I\left( 1;-2;3 \right)\) và R=5.
D. \(I\left( -1;2;-3 \right)\) và R=5.
-
Câu 27:
Trong không gian Oxyz, mặt phẳng \(\left( Oxz \right)\) có phương trình là
A. x = 0
B. z = 0
C. y = 0
D. x + z = 0.
-
Câu 28:
Trong không gian Oxyz cho đường thẳng \(d:\frac{x-1}{2}=\frac{y+2}{3}=z-3.\) Véc-tơ nào dưới đây là một véc-tơ chỉ phương của đường thẳng d?
A. \(\overrightarrow u = \left( {2;3;1} \right)\)
B. \(\overrightarrow u = \left( {2;3;0} \right)\)
C. \(\overrightarrow u = \left( {1;2;3} \right)\)
D. \(\overrightarrow u = \left( {1; - 2;3} \right)\)
-
Câu 29:
Gieo một con súc sắc cân đối đồng chất một lần. Tính xác suất để xuất hiện mặt chẵn.
A. \(\frac{1}{2}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{3}\)
-
Câu 30:
Đường cong trong hình dưới đây là đồ thị của hàm số nào?
A. \(y = {x^4} - 2{x^2}.\)
B. \(y = - {x^4} + 2{x^2}.\)
C. \(y = - {x^3} + 3{x^2}.\)
D. \(y = {x^3} - 2x.\)
-
Câu 31:
Giá trị nhỏ nhất của hàm số \(y=\frac{2x+1}{1-x}\) trên đoạn \(\left[ 2;3 \right]\) là:
A. \(\frac{3}{4}.\)
B. -5
C. \( - \frac{7}{2}.\)
D. -3
-
Câu 32:
Tập nghiệm của bất phương trình \({{\left( \frac{2}{3} \right)}^{4x}}\le {{\left( \frac{3}{2} \right)}^{2-x}}\) là
A. \(\left( { - \infty ; - \frac{2}{3}} \right]\)
B. \(\left( { - \infty ;\frac{2}{5}} \right]\)
C. \(\left( {\frac{2}{5}; + \infty } \right)\)
D. \(\left[ { - \frac{2}{3}; + \infty } \right)\)
-
Câu 33:
Tích phân \(\int\limits_{0}^{2}{\frac{a}{ax+3a}dx},\left( a>0 \right)\) bằng
A. \(\frac{{16a}}{{225}}\)
B. \(a\log \frac{5}{3}.\)
C. \(\ln \frac{5}{3}.\)
D. \(\frac{{2a}}{{15}}.\)
-
Câu 34:
Cho số phức \(\text{w}={{\left( 2+i \right)}^{2}}-3\left( 2-i \right).\) Giá trị của \(\left| \text{w} \right|\) là
A. \(\sqrt {54} \)
B. \(\sqrt {58} \)
C. \(2\sqrt {10} \)
D. \(\sqrt {43} \)
-
Câu 35:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Tìm số đo của góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\).
A. 90o
B. 45o
C. 60o
D. 30o
-
Câu 36:
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC=a. Dựng đoạn thẳng SH vuông góc với mặt phẳng \(\left( ABC \right)\) với SH=2a. Khoảng cách từ điểm C đến mặt phẳng \(\left( SAB \right)\) là
A. 3a
B. \(\frac{{\sqrt {21} }}{7}a.\)
C. \(\frac{7}{3}a.\)
D. \(\frac{{3\sqrt {21} }}{7}a.\)
-
Câu 37:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-4z=0.\) Viết phương trình mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại điểm \(A\left( 3;4;3 \right).\)
A. 4x + 4y - 2z - 22 = 0.
B. 2x + 2y + z - 17 = 0.
C. 2x + 4y - z - 25 = 0.
D. x + y + z - 10 = 0.
-
Câu 38:
Trong không gian với hệ tọa độ Oxyz, viết phương trình đường thẳng đi qua hai điểm \(A\left( 1;-2;3 \right)\) và \(B\left( 3;1;1 \right).\)
A. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 3}}{4}.\)
B. \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 3}}{2}.\)
C. \(2\left( {x - 1} \right) + 3\left( {y + 2} \right) - 2\left( {z - 3} \right) = 0.\)
D. \(\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z + 2}}{3}.\)
-
Câu 39:
Cho hàm số \(y=f\left( x \right)\). Biết hàm số \(y=f'\left( x \right)\) có đồ thị như hình bên. Trên \(\left[ -4;3 \right]\) hàm số \(g\left( x \right)=2f\left( x \right)+{{\left( 1-x \right)}^{2}}\) đạt giá trị nhỏ nhất tại điểm?
A. \({x_0} = - 4.\)
B. \({x_0} = 3.\)
C. \({x_0} = - 3.\)
D. \({x_0} = -1.\)
-
Câu 40:
Tìm tập hợp tất cả các giá trị thực của tham số $m$ để bất phương trình \({{\log }_{4}}\left( {{x}^{2}}-x-m \right)\ge {{\log }_{2}}\left( x+2 \right)\) có nghiệm.
A. \(\left( { - \infty ;6} \right]\)
B. \(\left( { - \infty ;6} \right)\)
C. \(\left( { - 2; + \infty } \right)\)
D. \(\left[ { - 2; + \infty } \right)\)
-
Câu 41:
Có bao nhiêu số thực a để \(\int\limits_{0}^{1}{\frac{x}{a+{{x}^{2}}}dx}=1?\)
A. 0
B. 1
C. 2
D. 3
-
Câu 42:
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z \right|=5\) và \(z\left( 2+i \right)\left( 1-2i \right)\) là một số thực. Tính \(P=\left| a \right|+\left| b \right|\).
A. P = 8
B. P = 4
C. P = 5
D. P = 7
-
Câu 43:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A$ và có \(AB=a,BC=a\sqrt{3},\) mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( ABC \right)\). Thể tích V của khối chóp S.ABC là
A. \(V = \frac{{2{a^3}\sqrt 6 }}{{12}}.\)
B. \(V = \frac{{{a^3}\sqrt 6 }}{6}.\)
C. \(V = \frac{{{a^3}\sqrt 6 }}{{12}}.\)
D. \(V = \frac{{{a^3}\sqrt 6 }}{4}.\)
-
Câu 44:
Một tấm đề can hình chữ nhật được cuộn lại theo chiều dài tạo thành một khối trụ có đường kính 50 cm. Người ta trải ra 250 vòng để cắt chữ và in tranh, phần còn lại là một khối trụ có đường kính 45 cm. Chiều dài phần trải ra gần với số nào nhất trong các số sau? (chiều dài tính bằng đơn vị mét).
A. 373
B. 180
C. 275
D. 343
-
Câu 45:
Trong không gian Oxyz cho đường thẳng \(d:\frac{x-3}{2}=\frac{y-2}{3}=\frac{z}{6}\) và mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{z}^{2}}=9.\) Biết đường thẳng d cắt mặt cầu \(\left( S \right)\) theo dây cung AB. Độ dài AB là
A. \(2\sqrt 5 \)
B. \(4\sqrt 2 \)
C. \(2\sqrt 3 \)
D. 4
-
Câu 46:
Cho hàm số \(y=f\left( x \right)\). Đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Tìm số điểm cực trị của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-3 \right).\)
A. 2
B. 3
C. 4
D. 5
-
Câu 47:
Có tất cả bao nhiêu bộ ba các số thực \(\left( x;y;z \right)\) thỏa mãn
\(\left\{ \begin{array}{l} {2^{\sqrt[3]{{{x^2}}}}}{.4^{\sqrt[3]{{{y^2}}}}}{.16^{\sqrt[3]{{{z^2}}}}} = 128\\ {\left( {x{y^2} + {z^4}} \right)^2} = 4 + {\left( {x{y^2} - {z^4}} \right)^2} \end{array} \right..\)
A. 3
B. 4
C. 1
D. 2
-
Câu 48:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị hai hàm số \(y={{x}^{2}}-4\) và \(y=-{{x}^{2}}-2x.\)
A. S = 9
B. S = -99
C. S = 3
D. \(S = 9\pi \)
-
Câu 49:
Cho hai số phức \({{z}_{1}}=\frac{1}{2}+\frac{\sqrt{3}}{2}i,{{z}_{2}}=-\frac{1}{2}+\frac{\sqrt{3}}{2}i.\) Gọi z là số phức thỏa mãn \(\left| 3z-\sqrt{3}i \right|=\sqrt{3}.\) Gọi M,m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức \(T=\left| z \right|+\left| z-{{z}_{1}} \right|+\left| z-{{z}_{2}} \right|\). Tính mô-đun của số phức \(\text{w}=M+mi.\)
A. \(\frac{{2\sqrt {21} }}{3}.\)
B. \(\sqrt {13} \)
C. \(\frac{{4\sqrt 3 }}{3}.\)
D. 4
-
Câu 50:
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác vuông tại \(A,AB=a,AC=a\sqrt{2}.\) Biết góc giữa hai mặt phẳng \(\left( AB'C' \right)\) và \(\left( ABC \right)\) bằng \({{60}^{0}}\) và hình chiếu của A lên \(\left( A'B'C' \right)\) là trung điểm H của đoạn thẳng A'B'. Tính bán kính mặt cầu ngoại tiếp tứ diện A.HB'C' theo a.
A. \(\frac{{a\sqrt {21} }}{7}.\)
B. \(\frac{{3a\sqrt 6 }}{8}.\)
C. \(\frac{{a\sqrt {62} }}{8}.\)
D. \(\frac{{2a\sqrt {21} }}{7}.\)