Ông \(A\) dự định sử dụng hết \(5{m^2}\) kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi chều dài, chiều rộng và chiều cao của bể cá lần lượt là \(a;b;c\left( {a;b;c > 0} \right)\)
Theo đề bài ta có \(a = 2b\) .
Vì ông \(A\) sử dụng \(5{m^2}\) kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là \(5\,{m^2}.\)
Hay \(ab + 2bc + 2ac = 5\) mà \(a = 2b\) nên
\(2{b^2} + 2bc + 4bc = 5 \Leftrightarrow 2{b^2} + 6bc = 5 \Rightarrow c = \dfrac{{5 - 2{b^2}}}{{6b}}\)
Thể tích bể cá là \(V = abc = 2b.b.\dfrac{{5 - 2{b^2}}}{{6b}} = \dfrac{{ - 2{b^3} + 5{b}}}{3}\)
Xét hàm số \(f\left( b \right) = \dfrac{{ - 2{b^3} + 5b}}{3}\,\,\,\left( {b > 0} \right) \Rightarrow f'\left( b \right) = \dfrac{{ - 6{b^2} + 5}}{3} = 0 \Rightarrow \left[ \begin{array}{l}b = - \sqrt {\dfrac{5}{6}} \,\,\left( {ktm} \right)\\b = \sqrt {\dfrac{5}{6}} \,\,\left( {tm} \right)\end{array} \right.\) (vì \(b > 0\))
Ta có BBT của \(y = f\left( b \right)\).
Từ BBT suy ra \(\max f\left( b \right) = \dfrac{{5\sqrt {30} }}{{27}} \simeq 1,01 \Leftrightarrow b = \sqrt {\dfrac{5}{6}} \)
Chọn D.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Hoàng Hoa Thám