Trắc nghiệm Vectơ trong không gian Toán Lớp 11
-
Câu 1:
Tìm véctơ \(\vec u\) biết rằng véctơ \(\vec u\) vuông góc với véctơ \(\vec a\) = (1;−2;1) và thỏa mãn \(\vec u.\vec b = - 1;{\mkern 1mu} {\mkern 1mu} \vec u.\vec c = - 5\) với \(\vec b = \left( {4; - 5;2} \right),{\mkern 1mu} {\mkern 1mu} \vec c = \left( {8;4; - 5} \right).\)
A. \(\overrightarrow u = \left( {1;3;5} \right)\)
B. \(\overrightarrow u = \left( {5;3;1} \right)\)
C. \(\overrightarrow u = \left( {3; - 5;1} \right)\)
D. \(\overrightarrow u = \left( { - 1;3;5} \right)\)
-
Câu 2:
Cho ΔABC có A(0;−2), B(4;0),C(1;1) và G là trọng tâm. Điểm M thuộc đường thẳng y = 2 sao cho \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right|\) nhỏ nhất, khi đó tọa độ \(\overrightarrow {MG} \) là
A. \(\left( {\frac{5}{3}; - \frac{7}{3}} \right)\)
B. \(\left( {\frac{5}{3}; \frac{7}{3}} \right)\)
C. \(\left( {0; \frac{7}{3}} \right)\)
D. \(\left( {0; -\frac{7}{3}} \right)\)
-
Câu 3:
Trong không gian với hệ tọa độ Oxyz , để hai vecto \(\overrightarrow a = (m;2;3);\overrightarrow b = (1;n;2)\) cùng phương thì (2m + 3n ) bằng.
A. 6
B. 9
C. 8
D. 7
-
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A(2;−1;1), B(3;0;−1), C(2;−1;3) và D thuộc trục Oy Tính tổng tung độ của các điểm D, biết thể tích tứ diện bằng 5 .
A. -6
B. 2
C. 7
D. -4
-
Câu 5:
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A′B′C′D′ biết A(1;0;1), B(2;1;2), D(1;−1;1) và C′(4;5;−5). Khi đó, thể tích của hình hộp đó là:
A. V = 9
B. V = 7
C. V = 10
D. V = 13
-
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1;2;−1); B(2;−1;3), C(−4;7;5). Tọa độ chân đường phân giác trong góc B của tam giác ABC là:
A. \(\left( { - \frac{2}{3};\frac{{11}}{3};1} \right)\)
B. \(\left( {\frac{2}{3};\frac{{11}}{3};\frac{1}{3}} \right)\)
C. \(\left( {\frac{{11}}{3}; - 2;1} \right)\)
D. (−2;11;1)
-
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2), B(−1;2;4). Tìm tọa độ điểm M thuộc trục Oz sao cho :MA2+MB2 = 32.
A. M(0;0;1) hoặc M(0;0;5)
B. M(0;0;−1) hoặc M(0;0;5)
C. M(0;0;−1) hoặc M(0;0;6)
D. M(0;0;1) hoặc M(0;0;−5)
-
Câu 8:
Cho A(1;2;5),B(1;0;2),C(4;7;−1),D(4;1;a). Để 4 điểm A,B,C,D đồng phẳng thì a bằng:
A. -10
B. 0
C. 7
D. -7
-
Câu 9:
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ \(\overrightarrow a = (1;m;2);\overrightarrow b = (m + 1;2;1);\overrightarrow c = (0;m - 2;2)\). Giá trị m bằng bao nhiêu để ba vectơ\(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
A. \(m = \frac{3}{5}\)
B. \(m = \frac{2}{5}\)
C. \(m = \frac{3}{4}\)
D. \(m = \frac{2}{3}\)
-
Câu 10:
Trong không gian với hệ tọa độ Oxyz, cho ba vectơ \(\overrightarrow a = (3; - 1; - 2);\overrightarrow b = (1;2;m);\overrightarrow c = (5;1;7)\). Giá trị mm bằng bao nhiêu để \(\overrightarrow c = \left[ {\overrightarrow a ,\overrightarrow b } \right]\)
A. m = −1
B. m = 1
C. m = 2
D. m = −2
-
Câu 11:
Trong không gian với hệ tọa độ Oxyz, các điểm A(1;2;3),B(3;3;4),C(−1;1;2) sẽ:
A. thẳng hàng và A nằm giữa B và C.
B. thẳng hàng và C nằm giữa B và A.
C. thẳng hàng và B nằm giữa A và C
D. là ba đỉnh của một tam giác
-
Câu 12:
Cho tứ diện ABCD . Đặt \(\overrightarrow{A B}=\vec{a}, \overrightarrow{A C}=\vec{b}, \overrightarrow{A D}=\vec{c}\),gọi M là trung điểm của BC. Trong các khẳng định sau, khẳng định nào đúng?
A. \(\begin{aligned} &\overrightarrow{D M}=\frac{1}{2}(\vec{a}+\vec{b}-2 \vec{c}) \end{aligned}\)
B. \(\overrightarrow{D M}=\frac{1}{2}(-2 \vec{a}+\vec{b}+\vec{c})\)
C. \(\begin{aligned} &\overrightarrow{D M}=\frac{1}{2}(\vec{a}-2 \vec{b}+\vec{c}) \end{aligned}\)
D. \(\overrightarrow{D M}=\frac{1}{2}(\vec{a}+2 \vec{b}-\vec{c})\)
-
Câu 13:
Cho tứ diện ABCD . Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{M N}=k(\overrightarrow{A D}+\overrightarrow{B C})\)
A. k=1
B. k=2
C. \(k=\frac{1}{2}\)
D. \(k=\frac{1}{3}\)
-
Câu 14:
Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt \(\vec{x}=\overrightarrow{A B} ; \vec{y}=\overrightarrow{A C} ; \vec{z}=\overrightarrow{A D}\) . Khẳng
định nào sau đây đúng?A. \(\overrightarrow{A G}=\frac{1}{3}(\vec{x}+\vec{y}+\vec{z})\)
B. \(\overrightarrow{A G}=-\frac{1}{3}(\vec{x}+\vec{y}+\vec{z})\)
C. \(\overrightarrow{A G}=\frac{2}{3}(\vec{x}+\vec{y}+\vec{z})\)
D. \(\overrightarrow{A G}=-\frac{2}{3}(\vec{x}+\vec{y}+\vec{z})\)
-
Câu 15:
Cho tứ diện ABCD . Gọi M và P lần lượt là trung điểm của AB và CD . Đặt \(\overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{A D}=\vec{d}\). Khẳng định nào sau đây đúng?
A. \(\overrightarrow{M P}=\frac{1}{2}(\vec{c}+\bar{d}+\vec{b})\)
B. \(\overrightarrow{M P}=\frac{1}{2}(\bar{d}+\vec{b}-\vec{c})\)
C. \(\overrightarrow{M P}=\frac{1}{2}(\vec{c}+\vec{b}-\vec{d})\)
D. \(\overrightarrow{M P}=\frac{1}{2}(\vec{c}+\bar{d}-\vec{b})\)
-
Câu 16:
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) với tâm O . Chọn đẳng thức sai.
A. \(\overrightarrow{A B}+\overrightarrow{A A_{1}}=\overrightarrow{A D}+\overrightarrow{D D_{1}}\)
B. \(\overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\)
C. \(\overrightarrow{A B}+\overrightarrow{B C_{1}}+\overrightarrow{C D}+\overrightarrow{D_{1} A}=\overrightarrow{0}\)
D. \(\overrightarrow{A B}+\overrightarrow{B C}+\overline{C C}_{1}=\overrightarrow{A D_{1}}+\overrightarrow{D_{1} O}+\overrightarrow{O C_{1}}\)
-
Câu 17:
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Đặt \(\overrightarrow{S A}=\vec{a}, \overrightarrow{S B}=\vec{b}, \overrightarrow{S C}=\vec{c}, \overrightarrow{S D}=\vec{d}\). Khẳng định nào sau đây đúng.
A. \(\vec{a}+\vec{c}=\vec{d}+\vec{b}\)
B. \(\vec{a}+\vec{c}+\vec{d}+\vec{b}=\overrightarrow{0}\)
C. \(\vec{a}+\vec{d}=\vec{b}+\vec{c}\)
D. \(\vec{a}+\vec{b}=\vec{c}+\vec{d}\)
-
Câu 18:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{A C}+\overrightarrow{B A^{\prime}}+k\left(\overrightarrow{D B}+\overrightarrow{C^{\prime} D}\right)=\overrightarrow{0}\)
A. k=0
B. k=1
C. k=2
D. k=4
-
Câu 19:
Cho tứ diện ABCD và I là trọng tâm tam giác ABC . Đẳng thức đúng là
A. \(6\overrightarrow{S I}=\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}\)
B. \(\overrightarrow{S I}=\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}\)
C. \(\overrightarrow{S I}=3(\overrightarrow{S A}-\overrightarrow{S B}+\overrightarrow{S C})\)
D. \(\overrightarrow{S I}=\frac{1}{3} \overrightarrow{S A}+\frac{1}{3} \overrightarrow{S B}+\frac{1}{3}\overrightarrow{S C}\)
-
Câu 20:
Cho hình lăng trụ tam giác\(A B C A^{\prime} B^{\prime} C^{\prime}.\). Đặt \(\overrightarrow{A A^{\prime}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{B C}=\vec{d}.\) Trong các biểu
thức véctơ sau đây, biểu thức nào đúngA. \(\vec{a}=\vec{b}+\vec{c}\)
B. \(\vec{a}+\vec{b}+\vec{c}+\vec{d}=\overrightarrow{0}\)
C. \(\vec{b}-\vec{c}+\vec{d}=0\)
D. \(\vec{a}+\vec{b}+\vec{c}=\vec{d}\)
-
Câu 21:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: \(\overrightarrow{B D}-\overrightarrow{D^{\prime} D}-\overrightarrow{B^{\prime} D^{\prime}}=k\overrightarrow{B B^{\prime}}\)
A. k=1
B. k=2
C. k=3
D. k=4
-
Câu 22:
Cho tứ diện ABCD . Gọi P, Q là trung điểm của AB và CD . Chọn khẳng định đúng
A. \(\overrightarrow{P Q}=\frac{1}{4}(\overrightarrow{B C}+\overrightarrow{A D})\)
B. \(\overrightarrow{P Q}=\frac{1}{2}(\overrightarrow{B C}+\overrightarrow{A D})\)
C. \(\overrightarrow{P Q}=\frac{1}{2}(\overrightarrow{B C}-\overrightarrow{A D})\)
D. \(\overrightarrow{P Q}=\overrightarrow{B C}+\overrightarrow{A D}\)
-
Câu 23:
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn đẳng thức sai?
A. \(\overrightarrow{B C}+\overrightarrow{B A}=\overrightarrow{B_{1} C_{1}}+\overrightarrow{B_{1} A_{1}}\)
B. \(\overrightarrow{A D}+\overrightarrow{D_{1} C_{1}}+\overrightarrow{D_{1} A_{1}}=\overrightarrow{D C}\)
C. \(\overrightarrow{B C}+\overrightarrow{B A}+\overrightarrow{B B_{1}}=\overline{B D_{1}}\)
D. \(\overrightarrow{B A}+\overrightarrow{D D_{1}}+\overrightarrow{B D_{1}}=\overrightarrow{B C}\)
-
Câu 24:
Gọi M, N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD . Gọi I là trung điểm đoạn MN và P là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{P I}=k(\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D})\)
A. k=2
B. k=4
C. \(k=\frac{1}{2}\)
D. \(k=\frac{1}{4}\)
-
Câu 25:
Cho hai điểm phân biệt A, B và một điểm O bất kỳ không thuộc đường thẳng AB . Mệnh đề nào sau đây là đúng?
A. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\begin{aligned} \overrightarrow{O M} &=\overrightarrow{O A}+\overrightarrow{O B} \end{aligned}\)
B. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =\overrightarrow{O B}=k \overrightarrow{B A} \)
C. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =k\overrightarrow{O A}+(1-k) \overrightarrow{O B}\)
D. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =\overrightarrow{O B}=k(\overrightarrow{O B}-\overrightarrow{O A})\)
-
Câu 26:
Trong các kết quả sau đây, kết quả nào đúng? Cho hình lập phương ABCD.EFGH có cạnh a . Ta có AB \(\overrightarrow {A B} \cdot \overrightarrow{E G}\) bằng:
A. \(a^{2}\)
B. \(a \sqrt{2}\)
C. \(a \sqrt{3}\)
D. \(\frac{a \sqrt{2}}{2}\)
-
Câu 27:
Cho lăng trụ tam giác \(A B C \cdot A^{\prime} B^{\prime} C^{\prime} \text { có } \overrightarrow{A A^{\prime}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}\) Hãy phân tích (biểu thị) vectơ\(\overrightarrow {B^{\prime} C}\)qua các vectơ \(\vec{a}, \vec{b}, \vec{c}\)
A. \(\overrightarrow{B^{\prime} C}=\vec{a}+\vec{b}-\vec{c}\)
B. \(\overrightarrow{B^{\prime} C}=-\vec{a}+\vec{b}+\vec{c}\)
C. \(\overrightarrow{B^{\prime} C}=\vec{a}+\vec{b}+\vec{c}\)
D. \(\overrightarrow{B^{\prime} C}=-\vec{a}-\vec{b}+\vec{c}\)
-
Câu 28:
Cho tứ diện ABCD . Gọi M và N lần lượt là trung điểm của AB và CD . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{M N}=k(\overrightarrow{A C}+\overrightarrow{B D})\)
A. \(\begin{aligned} &k=\frac{1}{2} \end{aligned}\)
B. \( k=\frac{1}{3}\)
C. \(k=3\)
D. \(k=2\)
-
Câu 29:
Cho hình tứ diện ABCD có trọng tâm G . Mệnh đề nào sau đây là sai?
A. \(\overrightarrow{G A}+G\overrightarrow{B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\)
B. \(\overrightarrow{O G}=\frac{1}{4}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D})\)
C. \(\overrightarrow{A G}=\frac{2}{3}(\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D})\)
D. \(\overrightarrow{A G}=\frac{1}{4}\overrightarrow{A B}+\overrightarrow{A C}+\overline{A D})\)
-
Câu 30:
Cho lăng trụ tam giác \(A B C \cdot A^{\prime} B^{\prime} C^{\prime} \text { có } \overrightarrow{A A^{\prime}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}\). Hãy phân tích (biểu thị) vectơ \(\overrightarrow{B C^{\prime}}\) qua các vectơ \(\vec{a}, \vec{b}, \vec{c}\)
A. \(\overrightarrow{B C^{\prime}}=\vec{a}+\vec{b}-\vec{c}\)
B. \(\overrightarrow{B C^{\prime}}=-\vec{a}+\vec{b}-\vec{c}\)
C. \(\overrightarrow{B C^{\prime}}=-\vec{a}-\vec{b}+\vec{c}\)
D. \(\overrightarrow{B C^{\prime}}=\vec{a}-\vec{b}+\vec{c}\)
-
Câu 31:
Cho hình chóp S ABCD . có đáy là hình bình hành tâm O. Gọi G là điểm thỏa mãn:\(\overrightarrow{G S}+\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\). Trong các khẳng định sau, khẳng định nào đúng?
A. \(G, S, O\text{ không thẳng hàng.}\)
B. \(\overrightarrow{G S}=4 \overrightarrow{O G}\)
C. \(\overrightarrow{G S}=5 \overrightarrow{O G}\)
D. \(\overrightarrow{G S}=3 \overrightarrow{O G}\)
-
Câu 32:
Cho ba vectơ\(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
A. Các vec tơ \(\begin{array}{l} \vec{x}=\vec{a}+\vec{b}+2 \vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}-6 \vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+6 \vec{c} \end{array}\) đồng phẳng
B. Các vec tơ đồng phẳng \(\vec{x}=\vec{a}-2 \vec{b}+4 \vec{c} ; \vec{y}=3 \vec{a}-3 \vec{b}+2 \vec{c} ; \vec{z}=2 \vec{a}-3 \vec{b}-3 \vec{c} \)
C. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}+\vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}+\vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+3 \vec{c} \) đồng phẳng
D. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}-\vec{c} ; \vec{y}=2 \vec{a}-\vec{b}+3 \vec{c} ; \vec{z}=-\vec{a}-\vec{b}+2 \vec{c}\) đồng phẳng
-
Câu 33:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) với tâm O . Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:
A. \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C C^{\prime}}=\overrightarrow{A D^{\prime}}+\overrightarrow{D^{\prime} O}+\overrightarrow{O C^{\prime}}\)
B. \(\overrightarrow{A B}+\overrightarrow{A A^{\prime}}=\overrightarrow{A D}+\overrightarrow{D D^{\prime}}\)
C. \(\overrightarrow{A B}+\overrightarrow{B C^{\prime}}+\overrightarrow{C D}+\overrightarrow{D^{\prime} A}=\overrightarrow{0}\)
D. \(\overrightarrow{A C^{\prime}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A^{\prime}}\)
-
Câu 34:
Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có cạnh bằng a . Hãy tìm mệnh đề sai trong những
mệnh đề sau đây:A. \(2 \overrightarrow{A B}+\overrightarrow{B^{\prime} C^{\prime}}+\overrightarrow{C D}+\overrightarrow{D^{\prime} A^{\prime}}=\overrightarrow{0}\)
B. \(\overrightarrow{A D^{\prime}} \cdot \overrightarrow{A B^{\prime}}=a^{2}\)
C. \(\overrightarrow{A B^{\prime}} \cdot\overrightarrow{C D^{\prime}}=0\)
D. \(\left|\overrightarrow{A C^{\prime}}\right|=a \sqrt{3}\)
-
Câu 35:
Cho tứ diện ABCD . Gọi M, N lần lượt là trung điểm của AB, CD và G là trung điểm của MN . Trong các khẳng định sau, khẳng định nào sai?
A. \(\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}+\overrightarrow{M D}=4 \overrightarrow{M G}\)
B. \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{G D}\)
C. \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\)
D. \(\overline{G M}+\overrightarrow{G N}=\overrightarrow{0}\)
-
Câu 36:
Cho hình lập phương \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Gọi O là tâm của hình lập phương. Chọn đẳng thức đúng
A. \(\overrightarrow{A O}=\frac{1}{3}\left(\overline{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\right)\)
B. \(\overrightarrow{A O}=\frac{1}{2}\left(\overline{A B}+\overline{A D}+\overline{A A_{1}}\right)\)
C. \(\overrightarrow{A O}=\frac{1}{4}\left(\overline{A B}+\overrightarrow{A D}+\overrightarrow{A A}_{1}\right)\)
D. \(\overrightarrow{A O}=\frac{2}{3}\left(\overrightarrow{A B}+\overrightarrow{A D}+\overline{A A_{1}}\right)\)
-
Câu 37:
Cho tứ diện ABCD . Đặt \(\overrightarrow{A B}=\vec{a}, \overrightarrow{A C}=\vec{b}, \overrightarrow{A D}=\vec{c}\) gọi G là trọng tâm của tam giác BCD . Trong các đẳng thức sau, đẳng thức nào đúng?
A. \(\overrightarrow{A G}=\vec{a}+\vec{b}+\vec{c}\)
B. \(\overrightarrow{A G}=\frac{1}{3}(\vec{a}+\vec{b}+\vec{c})\)
C. \(\overrightarrow{A G}=\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})\)
D. \(\overrightarrow{A G}=\frac{1}{4}(\vec{a}+\vec{b}+\vec{c})\)
-
Câu 38:
Cho hình lập phương ABCD.EFGH có cạnh bằng a . Ta có \( \overrightarrow{A B} \cdot \overrightarrow{E G}\) bằng?
A. \(a^{2} \sqrt{2}\)
B. \(a^{2}\)
C. \(a^{2} \sqrt{3}\)
D. \(\frac{a^{2} \sqrt{2}}{2}\)
-
Câu 39:
Hãy chọn mệnh đề đúng trong các mệnh đề sau đây:
A. Tứ giác ABCD là hình bình hành nếu \(\begin{array}{l} \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overline{D A}=\vec{O} \end{array}\)
B. Tứ giác ABCD là hình bình hành nếu \(\overrightarrow{A B}=\overrightarrow{C D}\)
C. Cho hình chóp S.ABCD. Nếu có \(\overrightarrow{S B}+\overrightarrow{S D}=\overrightarrow{S A}+\overrightarrow{S C}\) thì tứ giác ABCD là hình bình hành.
D. Tứ giác ABCD là hình bình hành nếu \(\overrightarrow{A B}+\overrightarrow{A C}=\overrightarrow{A D}\)
-
Câu 40:
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Trong các khẳng định sau, khẳng định nào sai?
A. \(\overrightarrow{A C_{1}}+\overrightarrow{A_{1} C}=2 \overrightarrow{A C}\)
B. \(\overrightarrow{A C_{1}}+\overrightarrow{C A_{1}}+2 \overline{C_{1} C}=\overrightarrow{0}\)
C. \(\overrightarrow{A C_{1}}+\overrightarrow{A_{1} C}=\overrightarrow{A A_{1}}\)
D. \(\overrightarrow{C A_{1}}+\overrightarrow{A C}=\overrightarrow{C C_{1}}\)
-
Câu 41:
Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{A K}, \overrightarrow{G F} \end{array}\) đồng phẳng.
B. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G F} \end{array}\)đồng phẳng.
C. \(\overrightarrow{B D}, \overrightarrow{E K}, \overrightarrow{G F}\) đồng phẳng.
D. \(\overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G C}\) đồng phẳng.
-
Câu 42:
Cho hình lăng trụ tam giác \(A B C \cdot A_{1} B_{1} C\). Đặt \(\overrightarrow{A A_{1}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{B C}=\vec{d}\). Trong các đẳng
thức sau, đẳng thức nào đúng?A. \(\vec{a}+\vec{b}+\vec{c}+\vec{d}=\overrightarrow{0}\)
B. \(\vec{a}+\vec{b}+\vec{c}=\vec{d}\)
C. \(\vec{b}-\vec{c}+\bar{d}=\overrightarrow{0}\)
D. \(\vec{a}=\vec{b}+\vec{c}\)
-
Câu 43:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tâm O . Gọi I là tâm hình bình hành ABCD . Đặt \(\overrightarrow {A C^{\prime}}=\vec{u},\overrightarrow{C A^{\prime}}=\vec{v}, \overrightarrow{B D^{\prime}}=\vec{x}, \overline{D B^{\prime}}=\bar{y}\) . Trong các đẳng thức sau, đẳng thức nào đúng?
A. \(2 \overrightarrow{O I}=-\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
B. \(2 \overrightarrow{O I}=-\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\vec{y})\)
C. \(2 \overrightarrow{O I}=\frac{1}{2}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
D. \(2 \overrightarrow{O I}=\frac{1}{4}(\vec{u}+\vec{v}+\vec{x}+\bar{y})\)
-
Câu 44:
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{A B}+\overrightarrow{B_{1} C_{1}}+\overrightarrow {D D_{1}}=k \overrightarrow {A C_{1}}\)
A. k=0
B. k=1
C. k=2
D. k=3
-
Câu 45:
Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}+\vec{b} ; \vec{y}=\vec{a}-\vec{b}-\vec{c} ; \vec{z}=-3 \vec{b}-2 \vec{c}\).Chọn khẳng định đúng?
A. Ba vectơ \(\vec{x} ; \vec{y} ; \vec{z}\) đồng phẳng.
B. Hai vectơ \(\vec{x} ; \vec{a}\) cùng phương.
C. Hai vectơ \(\vec{x} ; \vec{b}\) cùng phương.
D. Ba vectơ \(\vec{x} ; \vec{y} ; \vec z\)đôi một cùng phương.
-
Câu 46:
Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn khẳng định đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{B D_{1}},\overrightarrow{B C_{1}} \end{array}\) đồng phẳng.
B. \(\overrightarrow {C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} B_{1}}\)đồng phẳng.
C. \(\overrightarrow{C D_{1}}, \overrightarrow{A D}, \overrightarrow{A_{1} C}\) đồng phẳng.
D. \(\overrightarrow{A B}, \overrightarrow{A D}, \overrightarrow{C_{1} A}\) đồng phẳng.
-
Câu 47:
Cho ba vectơ \(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Xét các vectơ \(\vec{x}=2 \vec{a}-\vec{b} ; \vec{y}=-4 \vec{a}+2 \vec{b} ; \vec{z}=-3 \vec{b}-2 \vec{c}\). Chọn khẳng định đúng
A. Hai vec tơ \(\vec x; \vec y\) cùng phương
B. Hai vec tơ \(\vec x; \vec z\)cùng phương
C. Hai vec tơ \(\vec y; \vec z\) cùng phương
D. Ba vec tơ \(\vec x; \vec y;\vec z\) đồng phẳng.
-
Câu 48:
Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tâm O . Đặt \(\overrightarrow{A B}=\vec{a} ; \overrightarrow{B C}=\vec{b}\). M là điểm xác định bởi \(\overrightarrow{O M}=\frac{1}{2}(\vec{a}-\vec{b})\) . Khẳng định nào sau đây đúng?
A. M là tâm hình bình hành \(A B B^{\prime} A^{\prime}\).
B. M là tâm hình bình hành BCC'B'
C. M là trung điểm BB' .
D. M là trung điểm CC'
-
Câu 49:
Cho tứ diện ABCD có G là trọng tâm tam giác BCD . Đặt \(\vec{x}=\overrightarrow{A B} ; \vec{y}=\overrightarrow{A C} ; \vec{z}=\overrightarrow{A D}\) . Khẳng định nào sau đây đúng
A. \(\overrightarrow{A G}=\frac{1}{3}(\vec{x}+\vec{y}+\vec{z})\)
B. \(\overrightarrow{A G}=-\frac{1}{3}(\vec{x}+\vec{y}+\vec{z})\)
C. \(\overrightarrow{A G}=\frac{2}{3}(\vec{x}+\vec{y}+\vec{z})\)
D. \(\overrightarrow{A G}=-\frac{2}{3}(\vec{x}+\vec{y}+\vec{z})\)
-
Câu 50:
Cho tứ diện ABCD . Người ta định nghĩa “G là trọng tâm tứ diện ABCD khi \(\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\)”. Khẳng định nào sau đây sai?
A. G là trung điểm của đoạn IJ ( I , J lần lượt là trung điểm AB và CD ).
B. G là trung điểm của đoạn thẳng nối trung điểm của AC và BD .
C. G là trung điểm của đoạn thẳng nối trung điểm của AD và BC .
D. Chưa thể xác định được.