Trắc nghiệm môn Toán cao cấp A1
Với hơn 100+ câu trắc nghiệm môn Toán cao cấp A1 có đáp án dành cho các bạn sinh viên Đại học - Cao đẳng ôn thi. Nội dung câu hỏi bao gồm những kiến thức về tích phân xác định, tích phân suy rộng, khai triển Maclaurin, hàm số, giới hạn, đạo hàm cấp,... Để ôn tập hiệu quả các bạn có thể ôn theo từng phần trong bộ câu hỏi này bằng cách trả lời các câu hỏi và xem lại đáp án và lời giải chi tiết. Sau đó các bạn hãy chọn tạo ra đề ngẫu nhiên để kiểm tra lại kiến thức đã ôn.
Chọn hình thức trắc nghiệm (25 câu/30 phút)
-
Câu 1:
Cho chuỗi \(\sum\limits_{n = 1}^n {{3^n}}\). Chọn phát biểu đúng?
A. Chuỗi phân kỳ
B. Chuỗi hội tụ
C. Chuỗi đan dấu
D. Chuỗi có dấu bất kỳ
-
Câu 2:
Cho \(S = {\sum\limits_{n = 1}^\infty {\left( {\frac{2}{3}} \right)} ^n}\) . Chọn phát biểu đúng:
A. \(S = + \infty\)
B. S = 2
C. S = 3
D. S = 0
-
Câu 3:
Tính \(\int {\cos x\cos 2xdx}\)
A. \(\frac{2}{3}{\cos ^3}x + \cos x + C\)
B. \(- \frac{1}{6}\cos 3x + \frac{1}{2}\cos x + C\)
C. \(- \frac{2}{3}{\sin ^3}x + \sin x + C\)
D. Đáp án B và C đều đúng
-
Câu 4:
Cho chuỗi \(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt {2n({n^2} + 7)} }}}\) . Chọn phát biểu đúng?
A. Chuỗi phân kỳ
B. Chuỗi hội tụ
C. Chuỗi đan dấu
D. Chuỗi có dấu bất kỳ
-
Câu 5:
Chọn phát biểu đúng dưới đây:
A. \(\sum\limits_{n = 1}^\infty {\frac{1}{{{3^n} + 1}}} \) là chuỗi phân kỳ
B. \(\sum\limits_{n = 1}^\infty {\frac{1}{{{3^n} }}} \) là chuỗi phân kỳ
C. \(\sum\limits_{n = 1}^\infty {\frac{{4n}}{{{3^n} + 10}}} \) là chuỗi hội tụ
D. \(\sum\limits_{n = 1}^\infty {{e^{ - n}}} \) là chuỗi hội tụ
-
Câu 6:
Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có \({{f'}_ + }(0)\)là:
A. \({{f'}_ + }(0) = - \infty \)
B. \({{f'}_ + }(0) = 1\)
C. \({{f'}_ + }(0) = + \infty \)
D. Đáp án khác
-
Câu 7:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[5]{{32 + x}} - 2}}{x}\)
A. 0
B. \(\frac{1}{{80}}\)
C. \(-\frac{4}{{3}}\)
D. \(\frac{-1}{{80}}\)
-
Câu 8:
Bán kính hội tụ của chuỗi \(\sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{{2^n} + {4^n}}}}\) là:
A. r = 4
B. r = 1/3
C. r = 1
D. r = 1/4
-
Câu 9:
Hàm số \(f(x) = \left\{ \begin{array}{l} {x^2}\sin \left( {\frac{1}{x}} \right),\,x \ne 0\\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\) có f'(0) là:
A. f'(0) = 1
B. Không tồn tại
C. \(f'\left( 0 \right){\rm{ }} = {\rm{ }}\infty\)
D. \(f'\left( 0 \right){\rm{ }} =0\)
-
Câu 10:
Tính tích phân xác định \(I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {4\cot xdx}\)
A. 2ln2
B. 2ln3
C. -1
D. 1
-
Câu 11:
Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \pi /4} \cot 2x.\cot (\frac{\pi }{4} - x)\)
A. 2
B. 1
C. 1/2
D. 0
-
Câu 12:
Hàm số \(f(x) = {x^2} - 3\left| x \right| + 2\) có f'(0) là:
A. 2x - 3
B. 3
C. 0
D. -3
-
Câu 13:
Tính \(\int\limits_3^4 {\frac{{dx}}{{4{x^2} - 16}}}\)
A. \(\frac{1}{{16}}(\ln 5 - \ln 3)\)
B. \(\frac{1}{4}(\ln 5 - \ln 3)\)
C. \(\frac{1}{8}(\ln 5 + \ln 3)\)
D. \(\frac{1}{4}(\ln 5 + \ln 3)\)
-
Câu 14:
Tính diện tích hình phẳng giới hạn bởi đường cong \(y = - 2{x^2} + 3x + 6\) và đường thẳng \(y=x+2\)
A. 9
B. 6
C. 8
D. 7
-
Câu 15:
Hàm số \(x = a.{\cos ^3}t,\,y = b.{\sin ^3}t,\,t \in (0,\frac{\pi }{2})\) có y'(x) là:
A. \(\frac{b}{a}\tan t\)
B. \(-\frac{b}{a}\tan t\)
C. \(3b \sin^2t\)
D. \(- {\cos ^2}t\,\sin t\)
-
Câu 16:
Hàm số \(f(x) = {x^2} - 3\left| x \right| + 2\) có f'(x) khi x < 0 là:
A. 2x + 3
B. 2x - 3
C. 0
D. 3 - 2x
-
Câu 17:
Tính tích phân suy rộng \(\int\limits_1^2 {\frac{{dx}}{{x\sqrt {x - 1} }}}\)
A. \(\frac{\pi }{4}\)
B. \(-\frac{\pi }{2}\)
C. \(\frac{\pi }{2}\)
D. 0
-
Câu 18:
Đạo hàm cấp n của hàm sin(ax) là:
A. \({a^n}.\sin (ax + n\frac{\pi }{2})\)
B. \({a^n}.\sin (ax + \frac{\pi }{2})\)
C. \({a^n}.\sin (x + n\frac{\pi }{2})\)
D. Kết quả khác
-
Câu 19:
Hàm số \(f(x) = \left\{ \begin{array}{l} {e^{1/x}},\,x \ne 0\\ 0,\,\,\,\,\,x = 0 \end{array} \right.\) có f'(0) là:
A. f'(0) = 0
B. f'(0) = -1
C. f'(0) = 1
D. Không tồn tại
-
Câu 20:
Tính tích phân suy rộng \(\int\limits_1^{ + \infty } {\frac{{dx}}{{{{(2x + 3)}^2}}}} \)
A. \(\frac{1}{5}\)
B. 0
C. \(\infty \)
D. \(\frac{1}{10}\)
-
Câu 21:
Tính tích phân suy rộng \(\int\limits_2^{ + \infty } {\frac{{({x^2} + 1)}}{{x{{(x - 1)}^3}}}} dx\)
A. \(1+ln2\)
B. \(1-ln2\)
C. \(\frac{1}{5}\ln 2\)
D. \(\frac{12}{5}\ln 6\)
-
Câu 22:
Tính tích phân suy rộng \(\int\limits_0^{ + \infty } {\frac{1}{{{e^x} + \sqrt {{e^x}} }}} dx\)
A. \(2ln2\)
B. \(1- 2ln2\)
C. \(1-ln2\)
D. \(2-2ln2\)
-
Câu 23:
Tính tích phân suy rộng \(\int\limits_1^{ + \infty } {\frac{1}{{x({{\ln }^2}x + 1)}}} dx\)
A. \(\frac{\pi }{2}\)
B. \(-\frac{\pi }{2}\)
C. 0
D. \(2ln2\)
-
Câu 24:
Tính tích phân xác định \(I = \int\limits_1^e {\frac{{dx}}{{2x(1 + {{\ln }^2}x)}}}\)
A. \(\frac{\pi }{8}\)
B. \(-\frac{\pi }{4}\)
C. \(\frac{\pi }{2}\)
D. 1
-
Câu 25:
Tính tích phân \(\int\limits_{\sqrt 7 }^4 {\frac{{dx}}{{\sqrt {{x^2} + 9} }}} \)
A. \(- 2\ln \frac{3}{{4 + \sqrt 7 }}\)
B. 0
C. \(\ln \frac{3}{{4 + \sqrt 7 }}\)
D. \( 2\ln \frac{3}{{4 + \sqrt 7 }}\)