Cho phương trình\(\log _{2}^{2} x-(5 m+1) \log _{2} x+4 m^{2}+m=0 .\) Biết phương trình có 2 nghiệm phân biệt \(x_{1}, x_{2}\) thỏa mãn\(x_{1}+x_{2}=165 .\) Giá trị của \(\left|x_{1}-x_{2}\right|\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐK: x>0
Đặt \(t=\log _{2} x\) khi đó phương trình trở thành \(t^{2}-(5 m+1) t+4 m^{2}+m=0(*)\)
Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) cũng phải có 2 nghiệm phân biệt
\(\begin{array}{l}
\Rightarrow \Delta>0 \\
\Rightarrow(5 m+1)^{2}-4\left(4 m^{2}+m\right)>0 \\
\Leftrightarrow 25 m^{2}+10 m+1-16 m^{2}-4 m>0 \\
\Leftrightarrow 9 m^{2}+6 m+1>0 \\
\Leftrightarrow(3 m+1)^{2}>0 \\
\Leftrightarrow m \neq-\frac{1}{3}
\end{array}\)
Khi đó phương trình (*) có hai nghiệm phân biệt \(\left[\begin{array}{l} t_{1}=\frac{5 m+1+3 m+1}{2}=4 m+1 \\ t_{2}=\frac{5 m+1-3 m-1}{2}=m \end{array} \Rightarrow\left[\begin{array}{l} x_{1}=2^{4 m+1} \\ x_{2}=2^{m} \end{array}\right.\right.\)
Theo đề bài ta có: \(x_{1}+x_{2}=165 \Leftrightarrow 2^{4 m+1}+2^{m}=165 \Leftrightarrow 2 \cdot\left(2^{m}\right)^{4}+2^{m}=165\)
Đặt \(u=2^{m}>0\) phương trình trở thành \(2 u^{4}+u-165=0\)
\(\begin{array}{l} \Leftrightarrow(u-3)\left(2 u^{3}+6 u^{2}+18 u+55\right)=0 \\ \Leftrightarrow u=3\left(\text { Do } u>0 \Rightarrow 2 u^{3}+6 u^{2}+18 u+55>0\right) \\ \Rightarrow 2^{m}=3 \\ \Rightarrow x_{1}=2 \cdot\left(2^{m}\right)^{4}=162, x_{2}=2^{m}=3 \end{array}\)
Vậy \(\left|x_{1}-x_{2}\right|=162-3 \mid=159\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Trường THPT chuyên Thái Bình