Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaGaamiEamaaCaaaleqabaGaaGOmaaaakiaadwgadaah % aaWcbeqaaiaaikdacaWG4baaaOGaaeizaiaadIhaaSqaaiaaicdaae % aacaaIXaaaniabgUIiYdaaaa!4256! K = \int\limits_0^1 {{x^2}{e^{2x}}{\rm{d}}x} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVy0lf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa % qabeGabaaabaGaamyDaiabg2da9iaadIhadaahaaWcbeqaaiaaikda % aaGccaqGKbGaamiEaiabgkDiElaabsgacaWG1bGaeyypa0JaaGOmai % aadIhaaeaacaWGKbGaamODaiabg2da9iaadwgadaahaaWcbeqaaiaa % ikdacaWG4baaaOGaaeizaiaadIhacqGHshI3caWG2bGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaaaacaWGLbWaaWbaaSqabeaacaaIYaGa % amiEaaaaaaaakiaawUhaaaaa!53D4! \left\{ {\begin{array}{*{20}{c}} {u = {x^2}{\rm{d}}x \Rightarrow {\rm{d}}u = 2x}\\ {dv = {e^{2x}}{\rm{d}}x \Rightarrow v = \frac{1}{2}{e^{2x}}} \end{array}} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVy0lf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % 4saiabg2da9maaeiaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG % 4bWaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqabaGaaGOmai % aadIhaaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiab % gkHiTmaapehabaGaamiEaiaadwgadaahaaWcbeqaaiaaikdacaWG4b % aaaOGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGc % cqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadwgadaahaaWcbe % qaaiaaikdaaaGccqGHsisldaqadaqaamaaeiaabaWaaSaaaeaacaaI % XaaabaGaaGOmaaaacaWG4bGaamyzamaaCaaaleqabaGaaGOmaiaadI % haaaaakiaawIa7amaaDaaaleaacaaIWaaabaGaaGymaaaakiabgkHi % TmaalaaabaGaaGymaaqaaiaaikdaaaWaa8qCaeaacaWGLbWaaWbaaS % qabeaacaaIYaGaamiEaaaakiaabsgacaWG4baaleaacaaIWaaabaGa % aGymaaqdcqGHRiI8aaGccaGLOaGaayzkaaaaaa!6865! \Rightarrow K = \left. {\frac{1}{2}{x^2}{e^{2x}}} \right|_0^1 - \int\limits_0^1 {x{e^{2x}}{\rm{d}}x} = \frac{1}{2}{e^2} - \left( {\left. {\frac{1}{2}x{e^{2x}}} \right|_0^1 - \frac{1}{2}\int\limits_0^1 {{e^{2x}}{\rm{d}}x} } \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVy0lf9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaaIXaaabaGaaGOmaaaacaWGLbWaaWbaaSqabeaacaaIYaaa % aOGaeyOeI0YaaqGaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaadI % hacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaOGaayjcSdWaa0ba % aSqaaiaaicdaaeaacaaIXaaaaOGaey4kaSYaaqGaaeaadaWcaaqaai % aaigdaaeaacaaI0aaaaiaadwgadaahaaWcbeqaaiaaikdacaWG4baa % aaGccaGLiWoadaqhaaWcbaGaaGimaaqaaiaaigdaaaGccqGH9aqpda % WcaaqaaiaaigdaaeaacaaI0aaaamaabmaabaGaamyzamaaCaaaleqa % baGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa!5390! = \frac{1}{2}{e^2} - \left. {\frac{1}{2}x{e^{2x}}} \right|_0^1 + \left. {\frac{1}{4}{e^{2x}}} \right|_0^1 = \frac{1}{4}\left( {{e^2} - 1} \right)\)