Cho hàm số \(f\left( x \right) = {{\sqrt {x + 1} } \over {\sqrt {x + 1} + 1}}\). Tính f'(0).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
f\left( x \right) = \dfrac{{\sqrt {x + 1} }}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1 - 1}}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1}}{{\sqrt {x + 1} + 1}} - \dfrac{1}{{\sqrt {x + 1} + 1}}\\
= 1 - \dfrac{1}{{\sqrt {x + 1} + 1}}\\
f'\left( x \right) =0 - \dfrac{{ - \left( {\sqrt {x + 1} + 1} \right)'}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{{\dfrac{{\left( {x + 1} \right)'}}{{2\sqrt {x + 1} }}}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{1}{{2\sqrt {x + 1} {{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
\Rightarrow f'\left( 0 \right) = \dfrac{1}{{2\sqrt 1 {{\left( {\sqrt 1 + 1} \right)}^2}}} = \dfrac{1}{8}
\end{array}\)