ADMICRO
Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;\,10} \right]\) và \(\int\limits_0^{10} {f\left( x \right){\rm{d}}x = 7} \) và \(\int\limits_2^6 {f\left( x \right){\rm{d}}x = 3} \). Tính \(P = \int\limits_0^2 {f\left( x \right){\rm{d}}x + \int\limits_6^{10} {f\left( x \right){\rm{d}}x} } \).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiTa có \(\int\limits_0^{10} {f\left( x \right){\rm{d}}x = 7} \Leftrightarrow \int\limits_0^2 {f\left( x \right){\rm{d}}x} + \int\limits_2^6 {f\left( x \right){\rm{d}}x} + \int\limits_6^{10} {f\left( x \right){\rm{d}}x} = 7\)
\( \Leftrightarrow \int\limits_0^2 {f\left( x \right){\rm{d}}x} + \int\limits_6^{10} {f\left( x \right){\rm{d}}x} = 7 – 3 = 4\).
Vậy P = 4.
ZUNIA9
AANETWORK