Tính \(\displaystyle \int\limits_0^{\frac{\pi }{2}} {({{\cos }^5}\varphi } - {\sin ^5}\varphi )d\varphi \)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(\displaystyle f\left( t \right) = {t^5}\) xác định và liên tục trên \(\displaystyle \mathbb{R}\).
Khi đó \(\displaystyle \int\limits_0^{\frac{\pi }{2}} {f\left( {\sin \varphi } \right)d\varphi } = \int\limits_0^{\frac{\pi }{2}} {f\left( {\cos \varphi } \right)d\varphi } \) hay \(\displaystyle \int\limits_0^{\frac{\pi }{2}} {{{\sin }^5}\varphi d\varphi } = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^5}\varphi d\varphi } \)
\(\displaystyle \Rightarrow \int\limits_0^{\frac{\pi }{2}} {{{\cos }^5}\varphi d\varphi } - \int\limits_0^{\frac{\pi }{2}} {{{\sin }^5}\varphi d\varphi } = 0\) \(\displaystyle \Rightarrow \int\limits_0^{\frac{\pi }{2}} {\left( {{{\cos }^5}\varphi - {{\sin }^5}\varphi } \right)d\varphi } = 0\)