Trong mặt phẳng với hệ tọa độ \(Oxy\), cho hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua tâm của \(\left( {{C_1}} \right)\), đi qua tâm của \(\left( {{C_2}} \right)\) và có các đường tiệm cận tiếp xúc với cả \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). Tổng \(a + b + c\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có đường tròn \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {1;2} \right)\) và bán kính \({R_1} = 1\)
Đường tròn \(\left( {{C_2}} \right)\) có tâm \({I_2}\left( { - 1;0} \right)\) và bán kính \({R_2} = 1\)
Đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) đi qua \({I_1};{I_2}\) nên ta có hệ \(\left\{ \begin{array}{l}\dfrac{{a + b}}{{1 + c}} = 2\\\dfrac{{ - a + b}}{{c - 1}} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a + b = 2c + 2\\ - a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 2c + 2\\a = b\end{array} \right.\)
Đồ thị hàm số \(y = \dfrac{{ax + b}}{{x + c}}\) có TCĐ \(\Delta :x = - c \Leftrightarrow x + c = 0\)
Vì \(\Delta \) tiếp xúc với cả \(\left( {{C_1}} \right);\left( {{C_2}} \right)\) nên \(\left\{ \begin{array}{l}d\left( {{I_1};\Delta } \right) = {R_1}\\d\left( {{I_2};\Delta } \right) = {R_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {1 + c} \right| = 1\\\left| { - 1 + c} \right| = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}c = 0\\c = - 2\end{array} \right.\\\left[ \begin{array}{l}c = 0\\c = 2\end{array} \right.\end{array} \right. \Rightarrow c = 0\)
Với \(c = 0 \Rightarrow \left\{ \begin{array}{l}a + b = 2\\a = b\end{array} \right. \Rightarrow a = b = 1 \Rightarrow a + b + c = 0 + 1 + 1 = 2.\)
Chọn B.