Biết \({\log _2}\left( {\sum\limits_{k = 1}^{100} {\left( {k \times {2^k}} \right)} - 2} \right) = a + {\log _c}b\) với \(a\),\(b\),\(c\) là các số nguyên và \(a > b > c > 1\). Tổng \(a + b + c\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(M = \sum\limits_{k = 1}^{100} {\left( {k{{.2}^k}} \right) - 2 = {{1.2}^1} + {{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}} - 2} \) \( = {2.2^2} + {3.2^3} + ... + {100.2^{100}}\)
Suy ra \(2M = 2.\left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right) \) \(= {2.2^3} + {3.2^4} + {4.2^5} + ... + {100.2^{101}}\)
Suy ra \(M = 2M - M \) \(= {2.2^3} + {3.2^4} + ... + {100.2^{101}} - \left( {{{2.2}^2} + {{3.2}^3} + ... + {{100.2}^{100}}} \right)\)
\( = {100.2^{101}} - {2^3} - {2^3} - {2^4} - {2^5} - ... - {2^{100}} \) \(= {100.2^{101}} - \left( {{2^3} + {2^4} + {2^5} + ... + {2^{100}}} \right) - {2^3}\)
Xét tổng \({2^3} + {2^4} + ... + {2^{100}}\) là tổng của \(98\) số hạng của cấp số nhân có \({u_1} = {2^3}\) và công bội \(q = 2.\)
Nên \({2^3} + {2^4} + ... + {2^{100}} = {2^3}.\dfrac{{1 - {2^{98}}}}{{1 - 2}} = {2^{101}} - {2^3}\)
Suy ra \(M = {100.2^{101}} - \left( {{2^{101}} - {2^3}} \right) - {2^3} \) \(= {99.2^{101}}\)
Từ đó \({\log _2}\left( {{{99.2}^{101}}} \right) \) \(= {\log _2}99 + {\log _2}{2^{101}} \) \(= 101 + {\log _2}99\) \( \Rightarrow a = 101;b = 99;c = 2 \Rightarrow a + b + c = 202.\)
Chọn B