Cho lăng trụ đều \(ABC.A'B'C'\) có \(AB = 2\sqrt 3 ,\,\,BB' = 2\).Gọi \(M,\,\,N,\,\,P\) tương ứng là trung điểm của \(A'B',\,\,A'C',\,\,BC\). Nếu gọi \(\alpha \) là độ lớn của góc của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ACC'} \right)\) thì \(\cos \alpha \) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left( {MNP} \right) \equiv \left( {MNCP} \right)\) (do \(CP//B'C'//MN\)) và \(\left( {ACC'} \right) \equiv \left( {ACC'A'} \right)\) \( \Rightarrow \alpha = \widehat {\left( {\left( {MNP} \right);\left( {ACC'} \right)} \right)} = \widehat {\left( {\left( {MNCP} \right);\left( {ACC'A'} \right)} \right)}\)
Dựng \(PE \bot AC,\,\,MF \bot A'C',\,\,\left( {E \in AC;\,F \in A'C'} \right)\) \( \Rightarrow CE = FN = \dfrac{1}{4}AC\) và \(P,E,F,M\) đồng phẳng
Ta có: \(PE \bot AC,\,\,PE \bot AA' \Rightarrow PE \bot \left( {ACC'A'} \right) \Rightarrow \left( {PEFM} \right) \bot \left( {ACC'A'} \right)\)
\( \Rightarrow \) Hình chiếu vuông góc của hình bình hành lên \(\left( {ACC'A'} \right)\) là hình bình hành \(ECNF\)\( \Rightarrow \cos \alpha = \dfrac{{{S_{ECNF}}}}{{{S_{MNCP}}}}\)
Ta có: \({S_{ECNF}} = EC.CC' = \dfrac{1}{4}.AC.CC' = \dfrac{1}{4}.2\sqrt 3 .2 = \sqrt 3 \);
\(\Delta A'B'C'\) đều \( \Rightarrow C'M = 2\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = 3\)
\(\Delta CC'M\) vuông tại C’ \( \Rightarrow CM = \sqrt {CC{'^2} + C'{M^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \)
\(\Delta CC'N\) vuông tại C’ \( \Rightarrow CN = \sqrt {CC{'^2} + C'{N^2}} = \sqrt {{2^2} + {{\sqrt 3 }^2}} = \sqrt 7 \)
\(\Delta MNC\) có: \(MN = \sqrt 3 ,\,\,CM = \sqrt {13} ,\,\,CN = \sqrt 7 \), có diện tích là: \({S_{MNC}} = \sqrt {p.\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)
\( = \sqrt {\dfrac{{\sqrt 3 + \sqrt 7 + \sqrt {13} }}{2}.\left( {\dfrac{{\sqrt 3 + \sqrt 7 + \sqrt {13} }}{2} - \sqrt 3 } \right)\left( {\dfrac{{\sqrt 3 + \sqrt 7 + \sqrt {13} }}{2} - \sqrt 7 } \right)\left( {\dfrac{{\sqrt 3 + \sqrt 7 + \sqrt {13} }}{2} - \sqrt {13} } \right)} \)
\( = \sqrt {\dfrac{{\sqrt 3 + \sqrt 7 + \sqrt {13} }}{2}.\dfrac{{\sqrt 7 + \sqrt {13} - \sqrt 3 }}{2}.\dfrac{{\sqrt 3 + \sqrt {13} - \sqrt 7 }}{2}.\dfrac{{\sqrt 3 + \sqrt 7 - \sqrt {13} }}{2}} = \dfrac{{5\sqrt 3 }}{4}\) \( \Rightarrow {S_{MNCP}} = \dfrac{{5\sqrt 3 }}{2}\)
\( \Rightarrow \cos \alpha = \dfrac{{{S_{ECNF}}}}{{{S_{MNCP}}}} = \dfrac{{\sqrt 3 }}{{\dfrac{{5\sqrt 3 }}{2}}} = \dfrac{2}{5}\).
Chọn: B