Đầu năm 2016, Curtis Cooper và các cộng sự tại nhóm nghiên cứu Đại học Central Mis-souri, Mỹ công bố số nguyên tố lớn nhất tại thời điểm đó. Số nguyên tố này là một dạng Mersenne, có giá trị bằng \(M = {2^{74207281}} - 1\). Hỏi M có bao nhiêu chữ số?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+) Xác định số chữ số của \(M + 1 = {2^{74207281}}\)
Tìm số tự nhiên n thỏa mãn \({10^n} \le {2^{74207281}} < {10^{n + 1}} \Leftrightarrow \left\{ \begin{array}{l}{10^n} \le {2^{74207281}}\\{10^{n + 1}} > {2^{74207281}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}n \le \log \left( {{2^{74207281}}} \right)\\n + 1 > \log \left( {{2^{74207281}}} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}n \le 74207281.\log 2 \approx 22338617,5\\n > 74207281.\log 2 - 1 \approx 22338616,5\end{array} \right. \Leftrightarrow n = 22338617\)
Vậy, \(M + 1 = {2^{74207281}}\) có \(n + 1 = \)22338618 chữ số
+) Xác định số chữ số của \(M = {2^{74207281}} - 1\)
Nhận xét: Do \(M + 1\) là số có 22338618 chữ số nên \(M\) hoặc có 22338618 chữ số hoặc có 22338617 chữ số.
\(M\) có 22338617 khi và chỉ khi \(M + 1 = {10^{22338617}}\), tức là: \({2^{74\,207\,281}} = {10^{22\,338\,617}} \Leftrightarrow {2^{51\,868664}} = {5^{22\,338\,617}}\): vô lí, do 2 là số chẵn, 5 là số lẻ.
Vậy, \(M = {2^{74207281}} - 1\) là số có \(22338618\) chữ số.
Chọn: D