Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, cạnh bên SA vuông góc với mặt đáy. Biết \(AB = 2AD = 2DC = 2a\), góc giữa hai mặt phẳng (SAB) và (SBC) là \({60^0}\). Độ dài cạnh SA là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi E là trung điểm của AB. Ta dễ dàng chứng minh được ADCE là hình vuông
\( \Rightarrow \left\{ \begin{array}{l}CE \bot AB\\CE \bot SA\end{array} \right. \Rightarrow CE \bot \left( {SAB} \right) \Rightarrow CE \bot SB\).
Trong (SAB) kẻ \(HE \bot SB\) ta có:
\(\left\{ \begin{array}{l}SB \bot EH\\SB \bot CE\end{array} \right. \Rightarrow SB \bot \left( {CHE} \right) \Rightarrow SB \bot CH\)
\(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {SBC} \right) = SB\\\left( {SAB} \right) \supset EH \bot SB\\\left( {SBC} \right) \supset CH \bot SB\end{array} \right. \Rightarrow \angle \left( {\left( {SAB} \right);\left( {SBC} \right)} \right) = \angle \left( {EH;CH} \right) = \angle CHE = {60^0}\)
Xét tam giác vuông \(CEH\) có \(EH = CE.\cot {60^0} = \dfrac{a}{{\sqrt 3 }}\).
Ta có \(\Delta SAB \sim \Delta EHB\,\,\left( {g.g} \right) \Rightarrow \dfrac{{SA}}{{EH}} = \dfrac{{SB}}{{BE}} \Rightarrow SA = \dfrac{{EH.SB}}{{BE}} = \dfrac{{\dfrac{a}{{\sqrt 3 }}.\sqrt {S{A^2} + 4{a^2}} }}{a}\)
\( \Leftrightarrow \sqrt 3 SA = \sqrt {S{A^2} + 4{a^2}} \Leftrightarrow 3S{A^2} = S{A^2} + 4{a^2} \Leftrightarrow S{A^2} = 2{a^2} \Leftrightarrow SA = a\sqrt 2 \).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên