Cho x là số thực dương, khai triển nhị thức \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}\) ta có hệ số của số hạng chứa \({x^m}\) bằng 792. Giá trị của m là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \({\left( {{x^2} + \dfrac{1}{x}} \right)^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{{\left( {{x^2}} \right)}^{12 - k}}{{\left( {\dfrac{1}{x}} \right)}^k}} = \sum\limits_{k = 0}^{12} {C_{12}^k{x^{24 - 3k}}} \), do đó hệ số của số hạng chứa \({x^m}\) trong khai triển trên ứng với \(24 - 3k = m \Leftrightarrow k = \dfrac{{24 - m}}{3}\).
Theo bài ra ta có \(C_{12}^{\dfrac{{24 - m}}{3}} = 792 \Leftrightarrow \left[ \begin{array}{l}\dfrac{{24 - m}}{3} = 5\\\dfrac{{24 - m}}{3} = 7\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 9\\m = 3\end{array} \right.\).
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên