Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right),\;ABC\) có tam giác vuông tại \(B.\) Biết \(BC = 2a,\;\;AB = 2a\sqrt 3 ,\;\;AD = 6a.\) Quay tam giác \(ABC\) và \(ABD\) (bao gồm cả điểm bên trong 2 tam giác) xung quanh đường thẳng \(AB\) ta được hai khối tròn xoay. Thể tích phần chung của 2 khối tròn xoay đó bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
Khối nón \(\left( {{N_1}} \right)\) được sinh bởi \(\Delta ABC\) khi quay quanh \(AB\) có chiều cao \({h_1} = AB\) và bán kính đáy \({R_1} = BC.\)
Khối nón \(\left( {{N_2}} \right)\) được sinh bởi \(\Delta ADB\) khi quay quanh \(AB\) có chiều cao \({h_2} = AB\) và bán kính đáy \({R_2} = AD.\)
Do hai khối nón cùng có chiều cao AB nên hai đáy của hai khối nón nằm trong hai mặt phẳng song song.
Trong mặt phẳng đáy của khối nón \(\left( {{N_1}} \right)\) kẻ đường kính GH // DE. Dễ dàng chứng minh dược DEGH là hình thang cân.
Gọi \(M = AG \cap BE;\,\,N = AH \cap BD\), \(I = AB \cap MN\).
Khi đó phần chung giữa hai khối nón \(\left( {{N_1}} \right)\) và \(\left( {{N_2}} \right)\) là hai khối nón:
+) Khối nón \(\left( {{N_3}} \right)\) đỉnh B, đường cao BI, bán kính đáy IN\( \Rightarrow {V_3} = \dfrac{1}{3}\pi .I{N^2}.BI\)
+) Khối nón \(\left( {{N_4}} \right)\) đỉnh A, đường cao AI, bán kính đáy IN \( \Rightarrow {V_4} = \dfrac{1}{3}\pi I{N^2}.AI\)
\( \Rightarrow \) Thể tích phần chung \(V = {V_3} + {V_4} = \dfrac{1}{3}\pi .I{N^2}.BI + \dfrac{1}{3}\pi I{N^2}.AI = \dfrac{1}{3}\pi I{N^2}\left( {AI + BI} \right) = \dfrac{1}{3}\pi .I{N^2}.AB\)
Áp dụng định lí Ta-lét ta có:
\(\begin{align}\frac{MN}{GH}=\frac{AI}{AB};\,\,\frac{MN}{DE}=\frac{BI}{AB}\Rightarrow \frac{MN}{GH}+\frac{MN}{DE}=\frac{AI+BI}{AB}=1 \\ \Rightarrow MN\left( \frac{1}{2BC}+\frac{1}{2AD} \right)=1\Leftrightarrow MN.\left( \frac{1}{2.2a}+\frac{1}{2.6a} \right)=1\Leftrightarrow MN=3a \\ \end{align}\)
Dễ thấy I là trung điểm của MN \( \Rightarrow IN = \dfrac{{MN}}{2} = \dfrac{{3a}}{2}\).
Vậy \(V = \dfrac{1}{3}\pi .{\left( {\dfrac{{3a}}{2}} \right)^2}.2a\sqrt 3 = \dfrac{{3\sqrt 3 \pi {a^3}}}{2}\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên