Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3} - 2{x^2} + 1\) thỏa mãn \(F\left( 0 \right) = 5.\) Khi đó phương trình \(F\left( x \right) = 5\) có số nghiệm thực là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(F\left( x \right) = \int {\left( {{x^3} - 2{x^2} + 1} \right)dx} = \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x + C\)
Lại có: \(F\left( 0 \right) = 5 \Leftrightarrow C = 5 \Rightarrow F\left( x \right) = \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x + 5\)
\( \Rightarrow F\left( x \right) = 5 \Leftrightarrow \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x = 0 \Leftrightarrow x\left( {\dfrac{{{x^3}}}{4} - \dfrac{{2{x^2}}}{3} + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x \approx - 1,04\end{array} \right.\)
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên