Cho tứ diện ABCD có \(\left( {ACD} \right) \bot \left( {BCD} \right),\,\,AC = AD = BC = BD = a,\,\,CD = 2x\). Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm của CD.
Do tam giác ACD cân tại A và tam giác BCD cân tại B
\( \Rightarrow \left\{ \begin{array}{l}CD \bot AH\\CD \bot BH\end{array} \right. \Rightarrow CD \bot \left( {ABH} \right) \Rightarrow CD \bot AB\)
Gọi E là trung điểm của AB, do tam giác ABC cân tại C \( \Rightarrow CE \bot AB\).
Ta có \(\left\{ \begin{array}{l}AB \bot CD\\AB \bot CE\end{array} \right. \Rightarrow AB \bot \left( {CDE} \right) \Rightarrow AB \bot DE\)
\(\left\{ \begin{array}{l}\left( {ABC} \right) \cap \left( {ABD} \right) = AB\\\left( {ABC} \right) \supset CE \bot AB\\\left( {ABD} \right) \supset DE \bot AB\end{array} \right. \Rightarrow \angle \left( {\left( {ABC} \right);\left( {ABD} \right)} \right) = \angle \left( {CE;DE} \right) = \angle CED = {90^0}\)
Ta có \(\Delta ABC = \Delta ADC\,\,\left( {c.c.c} \right) \Rightarrow CE = DE \Rightarrow \Delta CDE\) vuông cân tại E
\( \Rightarrow CD = CE\sqrt 2 \Leftrightarrow 2x = CE\sqrt 2 \Leftrightarrow CE = x\sqrt 2 \) (*)
Xét tam giác vuông CBH có \(B{H^2} = B{C^2} - C{H^2} = {a^2} - {x^2}\)
Xét tam giác vuông ACH có \(A{H^2} = A{C^2} - C{H^2} = {a^2} - {x^2}\)
Xét tam giác vuông ABH có \(A{B^2} = A{H^2} + B{H^2} = 2{a^2} - 2{x^2} \Rightarrow AE = \dfrac{{\sqrt {2{a^2} - 2{x^2}} }}{2}\)
Xét tam giác vuông ACE có \(C{E^2} = A{C^2} - A{E^2} = {a^2} - \dfrac{{{a^2} - {x^2}}}{2} = \dfrac{{{a^2} + {x^2}}}{2} \Rightarrow CE = \dfrac{{\sqrt {{a^2} + {x^2}} }}{{\sqrt 2 }}\)
Thay vào (*) ta có \(\dfrac{{\sqrt {{a^2} + {x^2}} }}{{\sqrt 2 }} = x\sqrt 2 \Leftrightarrow {a^2} + {x^2} = 4{x^2} \Leftrightarrow 3{x^2} = {a^2} \Leftrightarrow x = \dfrac{{a\sqrt 3 }}{3}\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên