Cho khối chóp \(SABCD\) có đáy là hình vuông cạnh \(\dfrac{a}{{\sqrt 2 }},\;\;\Delta SAC\) vuông tại \(S\) và nằm trong mặt phẳng vuông góc với đáy, cạnh bên \(SA\) tạo với đáy góc \({60^0}.\) Tính thể tích \(V\)của khối chóp \(SABCD.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là hình chiếu của \(S\) trên AC.
Ta có \(\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {ABCD} \right) = AC\\\left( {SAC} \right) \supset SH \bot AC\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).
Ta có : \(\angle \left( {SA,\;\;\left( {ABCD} \right)} \right) = \angle \left( {SA,\;AH} \right) = \angle \left( {SA,\;AC} \right) = \angle SAC.\)
Ta có : \(AC = AB\sqrt 2 = \dfrac{{a\sqrt 2 }}{2}.\sqrt 2 = a.\)
Xét \(\Delta SAC\) vuông tại \(S\) ta có: \(\left\{ \begin{array}{l}SA = AC.\cos {60^0} = \dfrac{a}{2}\\SC = AC.\sin {60^0} = \dfrac{{a\sqrt 3 }}{2}\end{array} \right..\)
Áp dụng hệ thức lượng cho \(\Delta SAC\) vuông tại \(S\) và có đường cao \(SH\) ta có: \(SH = \dfrac{{SA.SC}}{{AC}} = \dfrac{{\dfrac{a}{2}.\dfrac{{a\sqrt 3 }}{2}}}{a} = \dfrac{{a\sqrt 3 }}{4}.\)
\( \Rightarrow {V_{SABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}\dfrac{{a\sqrt 3 }}{4}.\dfrac{{{a^2}}}{2} = \dfrac{{{a^3}\sqrt 3 }}{{24}}.\)
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Khai Nguyên