Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Hai điểm \(M,N\) thuộc các cạnh \(AB\) và \(AD\) (M, N không trùng với A, B, D). Sao cho \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Kí hiệu \(V,\,{V_1}\) lần lượt là thể tích của các khối chóp \(S.ABCD\) và \(S.MBCDN\). Tìm giá trị lớn nhất của tỉ số \(\dfrac{{{V_1}}}{V}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo các khối chóp \(S.ABCD\) và \(S.MBCDN\) có cùng chiều cao kẻ từ S nên \(\dfrac{{{V_1}}}{V} = \dfrac{{{S_{MBCDN}}}}{{{S_{ABCD}}}}\)
Ta có: \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Áp dụng BĐT Cô si, ta có:
\(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} \ge 2\sqrt {\dfrac{{AB}}{{AM}}.2.\dfrac{{AD}}{{AN}}} = 2\sqrt 2 .\sqrt {\dfrac{{AB.AD}}{{AM.AN}}} \)(với \(\dfrac{{AB}}{{AM}} > 1,\,\,\dfrac{{AD}}{{AN}} > 1\))
\( \Rightarrow 2\sqrt 2 .\sqrt {\dfrac{{AB.AD}}{{AM.AN}}} \le 4 \Leftrightarrow \dfrac{{AB.AD}}{{AM.AN}} \le 2\)
\( \Rightarrow \dfrac{{{S_{\Delta ABD}}}}{{{S_{\Delta AMN}}}} \le 2 \Rightarrow \dfrac{{{S_{\Delta ABCD}}}}{{{S_{\Delta AMN}}}} \le 4\) (do \({S_{\Delta ABD}} = \dfrac{1}{2}{S_{\Delta ABCD}}\))\( \Rightarrow \dfrac{{{S_{\Delta AMN}}}}{{{S_{\Delta ABCD}}}} \ge \dfrac{1}{4}\)\( \Rightarrow \dfrac{{{S_{MBCDN}}}}{{{S_{ABCD}}}} \le \dfrac{3}{4} \Rightarrow \)\(\dfrac{{{V_1}}}{V} \le \dfrac{3}{4}\)
Tỉ số \(\dfrac{{{V_1}}}{V}\) đạt giá trị lớn nhất bằng \(\dfrac{3}{4}\) khi và chỉ khi \(\left\{ \begin{array}{l}\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\\\dfrac{{AB}}{{AM}} = 2.\dfrac{{AD}}{{AN}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{AB}}{{AM}} = 2\\\dfrac{{AD}}{{AN}} = 1\end{array} \right.\)
Chọn: B