Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm O cạnh a, SO vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SO = a\). Khoảng cách giữa \(SC\) và \(AB\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\left\{ \begin{array}{l}AB//CD\\CD \subset \left( {SCD} \right)\\AB \not\subset \left( {SCD} \right)\end{array} \right.\,\, \Rightarrow AB//\left( {SCD} \right)\,\).
Mà \(SC \subset \left( {SCD} \right)\,\, \Rightarrow d\left( {AB;SC} \right) = d\left( {AB;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\)
Do \(O\) là trung điểm của AC,
\( \Rightarrow \dfrac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {O;\left( {SCD} \right)} \right)}} = \dfrac{{AC}}{{OC}} = 2 \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = 2d\left( {O;\left( {SCD} \right)} \right)\)
Gọi I là trung điểm của CD. Dựng \(OH \bot SI,\,\,H \in SI\) (1)
Ta có: \(\left\{ \begin{array}{l}CD \bot OI\\CD \bot SO\end{array} \right.\,\, \Rightarrow CD \bot \left( {SOI} \right) \Rightarrow CD \bot OH\) (2)
Từ (1), (2), suy ra \(OH \bot \left( {SCD} \right)\, \Rightarrow d\left( {O;\left( {SCD} \right)} \right) = OH\)
\(\Delta SOI\)vuông tại O, \(OH \bot SI \Rightarrow \dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{I^2}}} + \dfrac{1}{{S{O^2}}} = \dfrac{1}{{{{\left( {\dfrac{a}{2}} \right)}^2}}} + \dfrac{1}{{{a^2}}} = \dfrac{5}{{{a^2}}} \Rightarrow OH = \dfrac{{a\sqrt 5 }}{5}\)
\( \Rightarrow d\left( {AB;CD} \right) = \dfrac{{2a\sqrt 5 }}{5}\).
Chọn: C