Cho hàm số \(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\), hàm số \(y = \sin \,x\)đồng biến.
Đặt \(t = \sin x,\,\,x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow t \in \left( {0;1} \right)\) .
Khi đó, hàm số\(y = \left| {{{\sin }^3}x - m.\sin \,x + 1} \right|\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\) khi và chỉ khi \(y = f\left( t \right) = \left| {{t^3} - mt + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\).
Xét hàm số \(y = f\left( t \right) = {t^3} - mt + 1\) trên khoảng \(\left( {0;1} \right)\), có :\(f'\left( t \right) = 3{t^2} - m\)
+) Khi \(m = 0\): \(f'\left( x \right) = 3{x^2} \ge 0,\,\,\forall x\)\( \Rightarrow y = f\left( x \right) = {x^3} + 1\) đồng biến trên \(\left( {0;1} \right)\)
Và đồ thị hàm số \(y = f\left( x \right) = {x^3} + 1\) cắt Ox tại điểm duy nhất là \(x = - 1 \in \left( {0;1} \right)\)
\( \Rightarrow \)\(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) \( \Rightarrow m = 0\): thỏa mãn.
+) \(m > 0\): \(f'\left( x \right) = 0\) có 2 nghiệm phân biệt \({x_1} = - \sqrt {\dfrac{m}{3}} ,\,\,{x_2} = \sqrt {\dfrac{m}{3}} \)
Hàm số \(y = f\left( x \right) = {x^3} - m\,x + 1\) đồng biến trên các khoảng \(\left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) và \(\left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\)
Nhận xét: \(\left( {0;1} \right) \not\subset \left( {\sqrt {\dfrac{m}{3}} ; + \infty } \right)\) , \(\left( {0;1} \right) \not\subset \left( { - \infty ; - \sqrt {\dfrac{m}{3}} } \right)\) , \(\forall m > 0\)
TH1: \( - \sqrt {\dfrac{m}{3}} < 0 < \sqrt {\dfrac{m}{3}} < 1 \Leftrightarrow 0 < m < 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 = 0\) có nghiệm (bội lẻ) là \(x = \sqrt {\dfrac{m}{3}} \)
\( \Rightarrow \dfrac{{m\sqrt m }}{{3\sqrt 3 }} - \dfrac{{m\sqrt m }}{{\sqrt 3 }} + 1 = 0 \Leftrightarrow - 2m\sqrt m + 3\sqrt 3 = 0 \Leftrightarrow m\sqrt m = \dfrac{{3\sqrt 3 }}{2} \Leftrightarrow m = \dfrac{3}{{\sqrt[3]{4}}}\) (thỏa mãn)
TH2: \( - \sqrt {\dfrac{m}{3}} < 0 < 1 \le \sqrt {\dfrac{m}{3}} \Leftrightarrow m \ge 3\)
Để \(y = g\left( x \right) = \left| {{x^3} - m\,x + 1} \right|\) đồng biến trên \(\left( {0;1} \right)\) thì \({x^3} - m\,x + 1 \le 0,\,\,\forall x \in \left( {0;1} \right)\)
\( \Leftrightarrow mx \le {x^3} + 1,\,\,\forall x \in \left( {0;1} \right) \Leftrightarrow m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\)
Xét hàm số \(y = {x^2} + \dfrac{1}{x},\,\,x \in \left( {0;1} \right)\, \Rightarrow y' = 2x - \dfrac{1}{{{x^2}}}\); \(y' = 0 \Leftrightarrow x = \dfrac{1}{{\sqrt[3]{2}}} \in \left( {0;1} \right)\)
Hàm số liên tục trên \(\left( {0;1} \right)\) và \(y\left( {\dfrac{1}{{\sqrt[3]{2}}}} \right) = \dfrac{3}{{\sqrt[3]{4}}};\,\,\,y\left( 1 \right) = 2;\,\,\mathop {\lim }\limits_{x \to {0^ + }} y = \, + \infty \, \Rightarrow \mathop {\min }\limits_{\left( {0;1} \right)} y = \dfrac{3}{{\sqrt[3]{4}}}\)
Để \(m \le {x^2} + \dfrac{1}{x},\,\,\forall x \in \left( {0;1} \right)\) thì \(m \le \dfrac{3}{{\sqrt[3]{4}}} \Rightarrow \)Không có giá trị của m thỏa mãn.
Vậy, chỉ có giá trị \(m = 0\) thỏa mãn.
Chọn: A