Có bao nhiêu điểm thuộc đồ thị \(\left( C \right)\) của hàm số \(y = \dfrac{2}{{{x^2} + 2x + 2}}\) có hoành độ và tung độ đều là số nguyên?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(y = \dfrac{2}{{{x^2} + 2x + 2}} = \dfrac{2}{{{{\left( {x + 1} \right)}^2} + 1}}\)
Mà \(0 < \dfrac{2}{{{{\left( {x + 1} \right)}^2} + 1}} \le 2,\,\,do{\left( {x + 1} \right)^2} \ge 0 \Rightarrow y \in \left\{ {1;2} \right\}\)
Với \(y = 1 \Rightarrow \dfrac{2}{{{x^2} + 2x + 2}} = 1 \Leftrightarrow {x^2} + 2x + 2 = 2 \Leftrightarrow {x^2} + 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right. \Rightarrow \) Các điểm \(\left( { - 2;1} \right),\,\,\left( {0;1} \right)\) thỏa mãn.
Với \(y = 2 \Rightarrow \dfrac{2}{{{x^2} + 2x + 2}} = 2 \Leftrightarrow {x^2} + 2x + 2 = 1 \Leftrightarrow {x^2} + 2x + 1 = 0 \Leftrightarrow x = - 1 \Rightarrow \) Điểm \(\left( { - 1;2} \right)\) thỏa mãn.
Vậy, đồ thị \(\left( C \right)\) có 3 điểm có hoành độ và tung độ đều là số nguyên.
Chọn: D