Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 2019;2019} \right]\) để đồ thị hàm số \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐồ thị hàm số có hai tiệm cận đứng \( \Rightarrow 4{x^2} - 2x + m = 0\) (1) có hai nghiệm phân biệt
+) \(x = - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow 4.{\left( { - \dfrac{1}{2}} \right)^2} - 2.\left( { - \dfrac{1}{2}} \right) + m = 0 \Leftrightarrow m = - 2\)
Khi đó, \(y = \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }}\) (TXĐ: \(D = \left( { - \dfrac{1}{2};1} \right)\))
\(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {4{x^2} - 2x - 2} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \dfrac{{2x + 1}}{{\sqrt {\left( {x - 1} \right)\left( {2x + 1} \right)} }} = \mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{2}} \right)}^ + }} \sqrt {\dfrac{{2x + 1}}{{x - 1}}} = 0\)
\( \Rightarrow x = - \dfrac{1}{2}\) không phải TCĐ của đồ thị hàm số đã cho \( \Rightarrow \) Đồ thị hàm số có ít hơn 2 đường tiệm cận đứng \( \Rightarrow m = - 2\): Loại
+) \(x = - \dfrac{1}{2}\) là nghiệm của (1) \( \Leftrightarrow m \ne - 2\)
Khi đó, để có hai tiệm cận đứng thì (1) có 2 nghiệm phân biệt\( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 4m > 0 \Leftrightarrow m < \dfrac{1}{4} \Rightarrow \left\{ \begin{array}{l}m < \dfrac{1}{4}\\m \ne - 2\end{array} \right.\)
Mà \(m \in \mathbb{Z},\,\,m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left\{ { - 2019; - 2018;...;0} \right\}\backslash \left\{ { - 2} \right\}\): Có 2019 số m thỏa mãn.
Chọn: D