Nghiệm của bất phương trình \(\displaystyle {2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
\Leftrightarrow {2^{2x}}{.2^{ - 1}} + {2^{2x}}{.2^{ - 2}} + {2^{2x}}{.2^{ - 3}} \ge 448\\
\Leftrightarrow {2^{2x}}.\frac{1}{2} + {2^{2x}}.\frac{1}{{{2^2}}} + {2^{2x}}.\frac{1}{{{2^3}}} \ge 448
\end{array}\)
\(\displaystyle \Leftrightarrow \frac{1}{2}{.2^{2x}} + \frac{1}{4}{.2^{2x}} + \frac{1}{8}{.2^{2x}} \ge 448\)
\(\begin{array}{l}
\Leftrightarrow \left( {\frac{1}{2} + \frac{1}{4} + \frac{1}{8}} \right){.2^{2x}} \ge 448\\
\Leftrightarrow \frac{7}{8}{.2^{2x}} \ge 448
\end{array}\)
\(\displaystyle \Leftrightarrow {2^{2x}} \ge 512\) \(\displaystyle \Leftrightarrow {2^{2x}} \ge {2^9} \) \( \Leftrightarrow 2x \ge 9\) \(\Leftrightarrow x \ge \frac{9}{2}\)