Giải hệ phương trình: \(\left\{ \begin{array}{l}x + \left( {\sqrt 2 - 1} \right)y = 1\\\left( {\sqrt 2 + 1} \right)x - y = \sqrt 2 + 1\end{array} \right.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}\left\{ \begin{array}{l}x + \left( {\sqrt 2 - 1} \right)y = 1\\\left( {\sqrt 2 + 1} \right)x - y = \sqrt 2 + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\\left( {\sqrt 2 + 1} \right)x - y = \sqrt 2 + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\\left( {\sqrt 2 + 1} \right)\left[ {1 - \left( {\sqrt 2 - 1} \right)y} \right] - y = \sqrt 2 + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\\sqrt 2 + 1 - \left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 - 1} \right)y - y = \sqrt 2 + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\ - y - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\ - 2y = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 1 - \left( {\sqrt 2 - 1} \right)y\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right..\end{array}\)
Vậy nghiệm của hệ phương trình là \(\left( {x;y} \right) = \left( {1;0} \right)\)
Chọn B.