Trắc nghiệm Tích phân Toán Lớp 12
-
Câu 1:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY % da8iaadIhacqGH8aapdaWcaaqaaiabec8aWbqaaiaaikdaaaaaaa!3C3B! 0 < x < \frac{\pi }{2}\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiDaiaacggacaGGUbGaamiEaiaabsgacaWG4bGaeyypa0da % leaacaaIWaaabaGaamyyaaqdcqGHRiI8aOGaamyBaaaa!42AD! \int\limits_0^a {x\tan x{\rm{d}}x = } m\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaeWaaeaadaWcaaqaaiaadIhaaeaaciGGJbGaai4B % aiaacohacaWG4baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa % aakiaabsgacaWG4baaleaacaaIWaaabaGaamyyaaqdcqGHRiI8aaaa % !450D! I = \int\limits_0^a {{{\left( {\frac{x}{{\cos x}}} \right)}^2}{\rm{d}}x} \) theo a và m
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a % qpcaWGHbGaciiDaiaacggacaGGUbGaamyyaiabgkHiTiaaikdacaWG % Tbaaaa!3F72! I = a\tan a - 2m\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a % qpcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaciiDaiaacggacaGGUbGa % amyyaiabgkHiTiaad2gaaaa!3FA9! I = {a^2}\tan a - m\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a % qpcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaciiDaiaacggacaGGUbGa % amyyaiabgkHiTiaaikdacaWGTbaaaa!4065! I = {a^2}\tan a - 2m\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a % qpcqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaciiDaiaacgga % caGGUbGaamyyaiabgUcaRiaad2gaaaa!408B! I = - {a^2}\tan a + m\)
-
Câu 2:
Biết tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaaiOlaiaadwgadaahaaWcbeqaaiaaikdacaWG4baaaOGaaeiz % aiaadIhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccqGH9aqpda % WcaaqaaiaadwgadaahaaWcbeqaaiaadggaaaGccqGHRaWkcaWGIbaa % baGaaGinaaaaaaa!45ED! \int\limits_0^1 {x.{e^{2x}}{\rm{d}}x} = \frac{{{e^a} + b}}{4}\) với \(a,b \in Z\). Tính a +b
A. 2
B. 3
C. 0
D. 1
-
Câu 3:
Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaamyzamaaCaaaleqabaGaamiEaaaakiaabsgacaWG4baaleaa % caaIWaaabaGaamyyaaqdcqGHRiI8aOGaeyypa0JaaGymaaaa!40C7! \int\limits_0^a {x{e^x}{\rm{d}}x} = 1\) thì giá trị của a bằng bao nhiêu
A. 2
B. 1
C. e
D. 0
-
Câu 4:
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] , thỏa mãn f(1) = 5, \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaIXaaaniabgUIiYdGccqGH9aqpcaaIXaGaaGOmaa % aa!41AE! \int\limits_0^1 {f\left( x \right){\rm{d}}x} = 12\). tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 % da9maapehabaGaamiEaiqadAgagaqbamaabmaabaGaamiEaaGaayjk % aiaawMcaaiaabsgacaWG4baaleaacaaIWaaabaGaaGymaaqdcqGHRi % I8aaaa!4205! J = \int\limits_0^1 {xf'\left( x \right){\rm{d}}x} \)
A. J = 17
B. J = -17
C. J7
D. J = -7
-
Câu 5:
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 6; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaaikdacaWG4bGaeyOeI0IaaGOmaaGaayjkaiaawMcaaiaa % c6caceWGMbGbauaadaqadaqaaiaadIhaaiaawIcacaGLPaaacaqGKb % GaamiEaiabg2da9iaaiAdaaSqaaiaaicdaaeaacaaIXaaaniabgUIi % Ydaaaa!4696! \int\limits_0^1 {\left( {2x - 2} \right).f'\left( x \right){\rm{d}}x = 6} \), . Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaIXaaaniabgUIiYdaaaa!3EE7! \int_0^1 {f\left( x \right){\rm{d}}x} \)
A. -3
B. -9
C. 3
D. 6
-
Câu 6:
Cho hàm số y = f(x) với f(0) = f(1) = 1. Biết rằng:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGLbWaaWbaaSqabeaacaWG4baaaOWaamWaaeaacaWGMbWaaeWaaeaa % caWG4baacaGLOaGaayzkaaGaey4kaSIabmOzayaafaWaaeWaaeaaca % WG4baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaIXaaaniabgUIiYdGccqGH9aqpcaWGHbGaamyzai % abgUcaRiaadkgaaaa!4C3F! \int\limits_0^1 {{e^x}\left[ {f\left( x \right) + f'\left( x \right)} \right]{\rm{d}}x} = ae + b\) Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2 % da9iaadggadaahaaWcbeqaaiaaikdacaaIWaGaaGymaiaaiEdaaaGc % cqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaGaaGimaiaaigdacaaI3a % aaaaaa!40C7! Q = {a^{2017}} + {b^{2017}}\)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2 % da9iaaikdadaahaaWcbeqaaiaaikdacaaIWaGaaGymaiaaiEdaaaGc % cqGHRaWkcaaIXaaaaa!3D52! Q = {2^{2017}} + 1\)
B. 2
C. 0
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2 % da9iaaikdadaahaaWcbeqaaiaaikdacaaIWaGaaGymaiaaiEdaaaGc % cqGHsislcaaIXaaaaa!3D5D! Q = {2^{2017}} - 1\)
-
Câu 7:
Biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaci4yaiaac+gacaGGZbGaaGOmaiaadIhacaWGKbGaamiEaiab % g2da9maalaaabaGaaGymaaqaaiaaisdaaaWaaeWaaeaacaWGHbGaci % 4CaiaacMgacaGGUbGaaGOmaiabgUcaRiaadkgaciGGJbGaai4Baiaa % cohacaaIYaGaey4kaSIaam4yaaGaayjkaiaawMcaaaWcbaGaaGimaa % qaaiaaigdaa0Gaey4kIipaaaa!50F5! \int\limits_0^1 {x\cos 2xdx = \frac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)} \) với \(a,b,c \in Z\) . Khẳng định nào sau đây đúng
A. a + b + c = 1
B. a - b + c = 0
C. 2a + b + c = -1
D. a + 2b + c = 1
-
Câu 8:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiGacYgacaGGUbGaamiEaiaabsgacaWG4baa % leaacaaIXaaabaGaaeyzaaqdcqGHRiI8aaaa!4196! I = \int\limits_1^{\rm{e}} {x\ln x{\rm{d}}x} \) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaWGHbGaaiOlaiaabwgadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaWGIbaabaGaam4yaaaaaaa!3D2E! = \frac{{a.{{\rm{e}}^2} + b}}{c}\) \((a,b,c \in Z)\) . Tính T = a+b+c
A. 5
B. 3
C. 4
D. 6
-
Câu 9:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaaigdacqGHRaWkcaWG4baacaGLOaGaayzkaaGaci4yaiaa % c+gacaGGZbGaaGOmaiaadIhacaqGKbGaamiEaaWcbaGaaGimaaqaam % aalaaabaGaeqiWdahabaGaaGinaaaaa0Gaey4kIipakiabg2da9maa % laaabaGaaGymaaqaaiaadggaaaGaey4kaSYaaSaaaeaacqaHapaCae % aacaWGIbaaaaaa!4C8B! \int\limits_0^{\frac{\pi }{4}} {\left( {1 + x} \right)\cos 2x{\rm{d}}x} = \frac{1}{a} + \frac{\pi }{b}\) \((a, b \in Z^*)\). Giá trị của tích a.b bằng
A. 32
B. 2
C. 4
D. 12
-
Câu 10:
Giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiGacogacaGGVbGaai4CamaaCaaaleqabaGa % aGOmaaaakiaadIhacaqGKbGaamiEaaWcbaGaaGimaaqaamaalaaaba % GaeqiWdahabaGaaGOmaaaaa0Gaey4kIipaaaa!4517! I = \int\limits_0^{\frac{\pi }{2}} {x{{\cos }^2}x{\rm{d}}x} \) được biểu diễn dưới dạng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaac6 % cacqaHapaCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGIbaaaa!3C05! a.{\pi ^2} + b\) \((a,b \in Q)\).Khi đó tích a.b bằng
A. 0
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaaabaGaaG4maiaaikdaaaaaaa!3925! - \frac{1}{{32}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaaabaGaaGymaiaaiAdaaaaaaa!3927! - \frac{1}{{16}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS % aaaeaacaaIXaaabaGaaGOnaiaaisdaaaaaaa!392A! - \frac{1}{{64}}\)
-
Câu 11:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhacaWGLbWaaWba % aSqabeaacaWG4baaaOGaaiOlaaaa!3E38! f\left( x \right) = x{e^x}.\)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % beqaniabgUIiYdGccqGH9aqpdaqadaqaaiaadIhacqGHRaWkcaaIXa % aacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUca % Riaadoeaaaa!463F! \int {f\left( x \right){\rm{d}}x} = \left( {x + 1} \right){e^x} + C\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % beqaniabgUIiYdGccqGH9aqpdaqadaqaaiaadIhacqGHsislcaaIXa % aacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaamiEaaaakiabgUca % Riaadoeaaaa!464A! \int {f\left( x \right){\rm{d}}x} = \left( {x - 1} \right){e^x} + C\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % beqaniabgUIiYdGccqGH9aqpcaWG4bGaamyzamaaCaaaleqabaGaam % iEaaaakiabgUcaRiaadoeaaaa!4319! \int {f\left( x \right){\rm{d}}x} = x{e^x} + C\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % beqaniabgUIiYdGccqGH9aqpcqGHsislcaWG4bGaamyzamaaCaaale % qabaGaamiEaaaakiabgUcaRiaadoeaaaa!4406! \int {f\left( x \right){\rm{d}}x} = - x{e^x} + C\)
-
Câu 12:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaac6caciGGJbGaai4BaiaacohacaWG4bGa % aeizaiaadIhaaSqaaiaaicdaaeaadaWcaaqaaiabec8aWbqaaiaaik % daaaaaniabgUIiYdaaaa!44D6! I = \int\limits_0^{\frac{\pi }{2}} {x.\cos x{\rm{d}}x} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaeqiWdaNaeyOeI0IaaGymaaqaaiaaikdaaaaaaa!3BF8! I = \frac{{\pi - 1}}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaeqiWdaNaeyOeI0IaaGOmaaqaaiaaikdaaaaaaa!3BF9! I = \frac{{\pi - 2}}{2}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaeqiWdaNaey4kaSIaaGymaaqaaiaaikdaaaaaaa!3BED! I = \frac{{\pi + 1}}{2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaeqiWdahabaGaaGOmaaaacqGHRaWkcaaIXaaaaa!3BED! I = \frac{\pi }{2} + 1\)
-
Câu 13:
Cho tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaeWaaeaacaWG4bGaeyOeI0IaaGymaaGaayjkaiaa % wMcaaiGacohacaGGPbGaaiOBaiaaikdacaWG4bGaamizaiaadIhaaS % qaaiaaicdaaeaadaWcaaqaaiabec8aWbqaaiaaisdaaaaaniabgUIi % Ydaaaa!481B! I = \int\limits_0^{\frac{\pi }{4}} {\left( {x - 1} \right)\sin 2xdx} \). Tìm đẳng thức đúng
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWG % 4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Cai % aaikdacaWG4bWaaqqaaeaadaqhaaWcbaGaaGimaaqaamaalaaabaGa % eqiWdahabaGaaGinaaaaaaGccqGHRaWkaiaawEa7amaalaaabaGaaG % ymaaqaaiaaikdaaaWaa8qCaeaaciGGJbGaai4BaiaacohacaaIYaGa % amiEaiaadsgacaWG4baaleaacaaIWaaabaWaaSaaaeaacqaHapaCae % aacaaI0aaaaaqdcqGHRiI8aaaa!568F! I = - \frac{1}{2}\left( {x - 1} \right)\cos 2x\left| {_0^{\frac{\pi }{4}} + } \right.\frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\cos 2xdx} \)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iabgkHiTmaabmaabaGaamiEaiabgkHiTiaaigdaaiaawIcacaGL % PaaaciGGJbGaai4BaiaacohacaaIYaGaamiEaiabgkHiTmaapehaba % Gaci4yaiaac+gacaGGZbGaaGOmaiaadIhacaWGKbGaamiEaaWcbaGa % aGimaaqaamaalaaabaGaeqiWdahabaGaaGinaaaaa0Gaey4kIipaaa % a!4E7C! I = - \left( {x - 1} \right)\cos 2x - \int\limits_0^{\frac{\pi }{4}} {\cos 2xdx} \)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaWG % 4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Cai % aaikdacaWG4bWaaqqaaeaadaqhaaWcbaGaaGimaaqaamaalaaabaGa % eqiWdahabaGaaGinaaaaaaGccqGHsisldaWcaaqaaiaaigdaaeaaca % aIYaaaaaGaay5bSdWaa8qCaeaaciGGJbGaai4BaiaacohacaaIYaGa % amiEaiaadsgacaWG4baaleaacaaIWaaabaWaaSaaaeaacqaHapaCae % aacaaI0aaaaaqdcqGHRiI8aaaa!569A! I = - \frac{1}{2}\left( {x - 1} \right)\cos 2x\left| {_0^{\frac{\pi }{4}} - \frac{1}{2}} \right.\int\limits_0^{\frac{\pi }{4}} {\cos 2xdx} \)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iabgkHiTmaabmaabaGaamiEaiabgkHiTiaaigdaaiaawIcacaGL % PaaaciGGJbGaai4BaiaacohacaaIYaGaamiEamaaeeaabaWaa0baaS % qaaiaaicdaaeaadaWcaaqaaiabec8aWbqaaiaaisdaaaaaaOGaey4k % aScacaGLhWoadaWdXbqaaiGacogacaGGVbGaai4CaiaaikdacaWG4b % GaamizaiaadIhaaSqaaiaaicdaaeaadaWcaaqaaiabec8aWbqaaiaa % isdaaaaaniabgUIiYdaaaa!5381! I = - \left( {x - 1} \right)\cos 2x\left| {_0^{\frac{\pi }{4}} + } \right.\int\limits_0^{\frac{\pi }{4}} {\cos 2xdx} \)
-
Câu 14:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaaG4maiaadIhacaGGUaGaamyzamaaCaaaleqabaGa % aGOmaiaadIhaaaGccaqGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0 % Gaey4kIipaaaa!42D0! I = \int\limits_0^1 {3x.{e^{2x}}{\rm{d}}x} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGOmaiaadwgadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIYaaabaGaaGyoaaaaaaa!3CD2! I = \frac{{2{e^2} + 2}}{9}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % ikdaaeaacaaIZaaaaaaa!3C10! I = \frac{{{e^2} + 2}}{3}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIZaaabaGaaGymaiaaiAdaaaaaaa!3D8C! I = \frac{{3{e^2} + 3}}{{16}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIZaaabaGaaGinaaaaaaa!3CCF! I = \frac{{3{e^2} + 3}}{4}\)
-
Câu 15:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEamaabmaabaGaaGOmaiabgUcaRiaadwgadaah % aaWcbeqaaiaadIhaaaaakiaawIcacaGLPaaacaqGKbGaamiEaaWcba % GaaGimaaqaaiaaigdaa0Gaey4kIipaaaa!43CB! I = \int\limits_0^1 {x\left( {2 + {e^x}} \right){\rm{d}}x} \)
A. 1
B. 2
C. 3
D. 4
-
Câu 16:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaadwgadaahaaWcbeqaaiaaikdacaWG4baa % aOGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa!4161! I = \int\limits_0^1 {x{e^{2x}}{\rm{d}}x} \)
A. I = 1
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaaI0aaaaaaa!3C1B! I = \frac{{{e^2} - 1}}{4}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaaI0aaaaaaa!3C1B! I = \frac{{{e^2} + 1}}{4}\)
D. -1
-
Câu 17:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaGaamiEamaaCaaaleqabaGaaGOmaaaakiaadwgadaah % aaWcbeqaaiaaikdacaWG4baaaOGaaeizaiaadIhaaSqaaiaaicdaae % aacaaIXaaaniabgUIiYdaaaa!4256! K = \int\limits_0^1 {{x^2}{e^{2x}}{\rm{d}}x} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa % igdaaeaacaaI0aaaaaaa!3C12! K = \frac{{{e^2} + 1}}{4}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa % igdaaeaacaaI0aaaaaaa!3C1D! K = \frac{{{e^2} - 1}}{4}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maalaaabaGaaGymaaqaaiaaisdaaaaaaa!3953! K = \frac{1}{4}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maalaaabaGaamyzamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisda % aaaaaa!3A75! K = \frac{{{e^2}}}{4}\)
-
Câu 18:
Để tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9maapehabaWaaeWaaeaacaWG4bGaey4kaSIaaGymaaGaayjkaiaa % wMcaaiaaikdadaahaaWcbeqaaiaadIhaaaaabaGaaGimaaqaaiaaig % daa0Gaey4kIipaaaa!41A8! M = \int\limits_0^1 {\left( {x + 1} \right){2^x}} \) bằng phương pháp tích phân từng phần ta đặt u = x + 1 và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaabaaa % aaaaaapeGaamODaiabg2da9iaaikdadaahaaWcbeqaaiaadIhaaaGc % caWGKbGaamiEaaaa!3CD2! {\rm{d}}v = {2^x}dx\). Tìm du và tính M
A. du = dx và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9maalaaabaGaaG4maaqaaiGacYgacaGGUbGaaGOmaaaacqGHRaWk % daWcaaqaaiaaigdaaeaadaqadaqaaiGacYgacaGGUbGaaGOmaaGaay % jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa!41F8! M = \frac{3}{{\ln 2}} + \frac{1}{{{{\left( {\ln 2} \right)}^2}}}\)
B. du = dx và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9maalaaabaGaaG4maaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaigdaaeaadaqadaqaaiGacYgacaGGUbGaaGOmaaGaay % jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa!4203! M = \frac{3}{{\ln 2}} - \frac{1}{{{{\left( {\ln 2} \right)}^2}}}\)
C. du = 1 và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9iaaiodaciGGSbGaaiOBaiaaikdacqGHsisldaqadaqaaiGacYga % caGGUbGaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa % a!4128! M = 3\ln 2 - {\left( {\ln 2} \right)^2}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaadw % hacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaahaaWc % beqaaiaaikdaaaGccqGHRaWkcaWG4baaaa!3E31! {\rm{d}}u = \frac{1}{2}{x^2} + x\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9maalaaabaGaaG4maaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaigdaaeaadaqadaqaaiGacYgacaGGUbGaaGOmaaGaay % jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa!4203! M = \frac{3}{{\ln 2}} - \frac{1}{{{{\left( {\ln 2} \right)}^2}}}\)
-
Câu 19:
Để tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 % da9maapehabaGaamiEaiGacohacaGGPbGaaiOBaiaaykW7caaIXaGa % aGOmaiaadIhacaqGKbGaamiEaaWcbaGaaGimaaqaaiabec8aWbqdcq % GHRiI8aaaa!465F! H = \int\limits_0^\pi {x\sin \,12x{\rm{d}}x} \) bằng phương pháp tích phân từng phần ta đặt u = x và dv = sin12xdx. Tìm du và tính H.
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaadw % hacqGH9aqpcaqGKbGaamiEaaaa!3ABF! {\rm{d}}u = {\rm{d}}x\) ; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 % da9maalaaabaGaeqiWdahabaGaaGymaiaaikdaaaaaaa!3B0B! H = \frac{\pi }{{12}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeizaiaadw % hacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadIhadaahaaWc % beqaaiaaikdaaaaaaa!3C48! {\rm{d}}u = \frac{1}{2}{x^2}\) ; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGymaiaaikdaaaaaaa!3BF8! H = - \frac{\pi }{{12}}\)
C. du = dx ; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 % da9iabgkHiTmaalaaabaGaeqiWdahabaGaaGymaiaaikdaaaaaaa!3BF8! H = - \frac{\pi }{{12}}\)
D. du = 1 ; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabg2 % da9maalaaabaGaeqiWdahabaGaaGymaiaaikdaaaaaaa!3B0B! H = \frac{\pi }{{12}}\)
-
Câu 20:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaadwgadaahaaWcbeqaaiaaikdacaWG4baa % aOGaamizaiaadIhaaSqaaiaaicdaaeaacaaIYaGaaGimaiaaigdaca % aI3aaaniabgUIiYdaaaa!4398! I = \int\limits_0^{2017} {x{e^{2x}}dx} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGinaiaaicdacaaIZaGaaG4maiaadwgadaahaaWc % beqaaiaaisdacaaIWaGaaG4maiaaisdaaaGccqGHRaWkcaaIXaaaba % GaaGOmaaaaaaa!4135! I = \frac{{4033{e^{4034}} + 1}}{2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGinaiaaicdacaaIZaGaaG4maiaadwgadaahaaWc % beqaaiaaisdacaaIWaGaaG4maiaaisdaaaGccqGHRaWkcaaIXaaaba % GaaGinaaaaaaa!4137! I = \frac{{4033{e^{4034}} + 1}}{4}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGinaiaaicdacaaIZaGaaG4maiaadwgadaahaaWc % beqaaiaaisdacaaIWaGaaG4maiaaisdaaaGccqGHsislcaaIXaaaba % GaaGinaaaaaaa!4142! I = \frac{{4033{e^{4034}} - 1}}{4}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGinaiaaicdacaaIZaGaaG4maiaadwgadaahaaWc % beqaaiaaisdacaaIWaGaaG4maiaaisdaaaGccqGHsislcaaIXaaaba % GaaGOmaaaaaaa!4140! I = \frac{{4033{e^{4034}} - 1}}{2}\)
-
Câu 21:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaac6cacaaIYaWaaWbaaSqabeaacaWG4baa % aOGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIYaaaniabgUIiYdaaaa!4129! I = \int\limits_0^2 {x{{.2}^x}{\rm{d}}x} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGioaaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaikdaaeaaciGGSbGaaiOBamaaCaaaleqabaGaaGOmaa % aakiaadIhaaaaaaa!40C6! I = \frac{8}{{\ln 2}} - \frac{2}{{{{\ln }^2}x}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGioaaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaiodaaeaaciGGSbGaaiOBamaaCaaaleqabaGaaGOmaa % aakiaadIhaaaaaaa!40C7! I = \frac{8}{{\ln 2}} - \frac{3}{{{{\ln }^2}x}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGioaaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaiwdaaeaaciGGSbGaaiOBamaaCaaaleqabaGaaGOmaa % aakiaadIhaaaaaaa!40C9! I = \frac{8}{{\ln 2}} - \frac{5}{{{{\ln }^2}x}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGioaaqaaiGacYgacaGGUbGaaGOmaaaacqGHsisl % daWcaaqaaiaaisdaaeaaciGGSbGaaiOBamaaCaaaleqabaGaaGOmaa % aakiaadIhaaaaaaa!40C8! I = \frac{8}{{\ln 2}} - \frac{4}{{{{\ln }^2}x}}\)
-
Câu 22:
Giá trị của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaadIhacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaaeyzamaa % CaaaleqabaGaamiEaaaakiaabsgacaWG4baaleaacaaIWaaabaGaaG % ymaaqdcqGHRiI8aaaa!41F4! \int\limits_0^1 {\left( {x + 1} \right){{\rm{e}}^x}{\rm{d}}x} \)
A. e - 1
B. 2e - 1
C. 2e + 1
D. e
-
Câu 23:
Cho hàm số y = f(x) có đạo hàm f'(x) liên tục trên [0;2] và f(2) = 3 và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpcaaIZaaaaa!40F4! \int\limits_0^2 {f\left( x \right){\rm{d}}x} = 3\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaaiOlaiqadAgagaqbamaabmaabaGaamiEaaGaayjkaiaawMca % aiaabsgacaWG4baaleaacaaIWaaabaGaaGOmaaqdcqGHRiI8aaaa!40E2! \int\limits_0^2 {x.f'\left( x \right){\rm{d}}x} \)
A. -3
B. 0
C. 3
D. 6
-
Câu 24:
Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaaG4maiaadIhacaqGLbWaaWbaaSqabeaacaWG4baa % aOGaaeizaiaadIhaaSqaaiabgkHiTiaaigdaaeaacaaIYaaaniabgU % IiYdaaaa!424E! I = \int\limits_{ - 1}^2 {3x{{\rm{e}}^x}{\rm{d}}x} \) nhận giá trị nào sau đây
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaiodaaaGccqGH % RaWkcaaI2aaabaGaaeyzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaa % aaaa!3ED0! I = \frac{{3{{\rm{e}}^3} + 6}}{{{{\rm{e}}^{ - 1}}}}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaiodaaaGccqGH % sislcaaI2aaabaGaaeyzamaaCaaaleqabaGaeyOeI0IaaGymaaaaaa % aaaa!3EDB! I = \frac{{3{{\rm{e}}^3} - 6}}{{{{\rm{e}}^{ - 1}}}}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaiodaaaGccqGH % RaWkcaaI2aaabaGaaeyzaaaaaaa!3CFB! I = \frac{{3{{\rm{e}}^3} + 6}}{{\rm{e}}}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaiodaaaGccqGH % RaWkcaaI2aaabaGaeyOeI0Iaaeyzaaaaaaa!3DE8! I = \frac{{3{{\rm{e}}^3} + 6}}{{ - {\rm{e}}}}\)
-
Câu 25:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiGacogacaGGVbGaai4CaiaadIhacaaMc8Ua % aeizaiaadIhaaSqaaiaaicdaaeaadaWcaaqaaiabec8aWbqaaiaaik % daaaaaniabgUIiYdaaaa!45B0! I = \int\limits_0^{\frac{\pi }{2}} {x\cos x\,{\rm{d}}x} \)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % aHapaCaeaacaaIYaaaaiabgkHiTiaaigdaaaa!3A25! \frac{\pi }{2} - 1\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % aHapaCaeaacaaIYaaaaiabgkHiTiaaigdaaaa!3A25! \frac{\pi }{2} + 1\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq % aHapaCaeaacaaIYaaaaiabgkHiTiaaigdaaaa!3A25! \frac{\pi }{2} \)
D. 1
-
Câu 26:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaaeyzamaaCaaaleqabaGaaGOmaiaadIhaaaGccaWGKbGaamiE % aaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9iaadggaca % qGLbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOyaaaa!4527! \int\limits_0^1 {x{{\rm{e}}^{2x}}dx} = a{{\rm{e}}^2} + b\)\(; ( a,b \in Q)\). Tính P = a + b
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa!3956! P= \frac{1}{2}\)
B. 0
C. 1
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9maalaaabaGaaGymaaqaaiaaikdaaaaaaa!3956! P = \frac{1}{2}\)
-
Câu 27:
Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaadIhaaeaacaaIXaGaey4kaSIaci4yaiaac+gacaGGZbGa % aGOmaiaadIhaaaGaaeizaiaadIhacqGH9aqpcaWGHbGaeqiWdaNaey % 4kaSIaamOyaiGacYgacaGGUbGaaGOmaaWcbaGaaGimaaqaamaalaaa % baGaeqiWdahabaGaaGinaaaaa0Gaey4kIipaaaa!4CCE! \int\limits_0^{\frac{\pi }{4}} {\frac{x}{{1 + \cos 2x}}{\rm{d}}x = a\pi + b\ln 2} \), với a, b là các số thực . tính 16a - 8b.
A. 4
B. 5
C. 2
D. 3
-
Câu 28:
Cho hàm y = f(x) có đạo hàm liên tục trên [0;5] và f(5) = 10; \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGabmOzayaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeiz % aiaadIhaaSqaaiaaicdaaeaacaaI1aaaniabgUIiYdGccqGH9aqpca % aIZaGaaGimaaaa!42BB! \int\limits_0^5 {xf'\left( x \right){\rm{d}}x} = 30\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % aiaaicdaaeaacaaI1aaaniabgUIiYdaaaa!3F2B! \int\limits_0^5 {f\left( x \right){\rm{d}}x} \)
A. 20
B. -30
C. -20
D. 70
-
Câu 29:
Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaac6cacaqGLbWaaWbaaSqabeaacaaIYaGa % amiEaaaakiaabsgacaWG4baaleaacaaIWaaabaGaaGOmaaqdcqGHRi % I8aaaa!4212! I = \int\limits_0^2 {x.{{\rm{e}}^{2x}}{\rm{d}}x} \) là
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaisdaaaGccqGH % sislcaaIXaaabaGaaGinaaaaaaa!3CD8! I = \frac{{3{{\rm{e}}^4} - 1}}{4}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaeyzamaaCaaaleqabaGaaGinaaaaaOqaaiaaisda % aaaaaa!3A73! I = \frac{{{{\rm{e}}^4}}}{4}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaGymaiabgkHiTiaaiodacaqGLbWaaWbaaSqabeaa % caaI0aaaaaGcbaGaaGinaaaaaaa!3CD8! I = \frac{{1 - 3{{\rm{e}}^4}}}{4}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maalaaabaGaaG4maiaabwgadaahaaWcbeqaaiaaisdaaaGccqGH % RaWkcaaIXaaabaGaaGinaaaaaaa!3CCC! I = \frac{{3{{\rm{e}}^4} + 1}}{4}\)
-
Câu 30:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaamyzamaaCaaaleqabaGaaGOmaiaadIhaaaGccaqGKbGaamiE % aaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiabg2da9iaadggaca % WGLbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOyaaaa!4528! \int\limits_0^1 {x{e^{2x}}{\rm{d}}x} = a{e^2} + b\); \((a,b \in Q)\). Tính a+ b
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGinaaaaaaa!377D! \frac{1}{4}\)
B. 0
C. 1
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % aIXaaabaGaaGinaaaaaaa!377D! \frac{1}{2}\)
-
Câu 31:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 % da9maapehabaGaamiEaiGacohacaGGPbGaaiOBaiaadIhacaaMc8Ua % aeizaiaadIhaaSqaaiaaicdaaeaacaqGapaaniabgUIiYdaaaa!4473! J = \int\limits_0^{\rm{\pi }} {x\sin x\,{\rm{d}}x} \)
A. \(-\pi\)
B. \(\pi\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % qGapaabaGaaGinaaaaaaa!3808! \frac{{\rm{\pi }}}{4}\)
D. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % qGapaabaGaaGinaaaaaaa!3808! \frac{{\rm{\pi }}}{2}\)
-
Câu 32:
F(x) là nguyên hàm của f(x) trên R thỏa \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaGg % aakmaalaaajaaObaGaaGymaaqaaiaadIhaaaGaamOraOWaaeWaaeaa % caWG4baacaGLOaGaayzkaaqcaaQaaeizaiaadIhaaKazbaiabaGaaG % ymaaqcbaEaaiaabwgaaKWaGkabgUIiYdGccqGH9aqpcaaIXaaaaa!4742! \int\limits_1^{\rm{e}} {\frac{1}{x}F\left( x \right){\rm{d}}x} = 1\) và F(e) = 3. Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaGg % aaciGGSbGaaiOBaiaadIhacaWGMbGcdaqadaqaaiaadIhaaiaawIca % caGLPaaajaaOcaqGKbGaamiEaaqcbaEaaiaaigdaaeaacaqGLbaajm % aOcqGHRiI8aaaa!450F! \int\limits_1^{\rm{e}} {\ln xf\left( x \right){\rm{d}}x} \)
A. 2
B. 3
C. 4
D. -2
-
Câu 33:
Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEaiaabwgadaahaaWcbeqaaiaadIhaaaaabaGa % aGymaaqaaiaaikdaa0Gaey4kIipakiaaykW7caqGKbGaamiEaaaa!4225! I = \int\limits_1^2 {x{{\rm{e}}^x}} \,{\rm{d}}x\)
A. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iaacwgadaahaaWcbeqaaiaaikdaaaaaaa!399A! I = {e^2}\)
B. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iabgkHiTiaacwgadaahaaWcbeqaaiaaikdaaaaaaa!3A87! I = - {e^2}\)
C. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9iaaiodacaGGLbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOm % aiaacwgaaaa!3CF3! I= 3{e^2} - 2e\)
D. I = e
-
Câu 34:
Cho \(\int_{-1}^{2} f(x) \mathrm{d} x=2 \text { và } \int_{-1}^{2} g(x) \mathrm{d} x=-1 . \text { Tính } I=\int_{-1}^{2}[x+2 f(x)-3 g(x)] \mathrm{d} x\)
A. \(I=\frac{5}{2}\)
B. \(I=\frac{7}{2}\)
C. \( I=\frac{17}{2}\)
D. \(I=\frac{11}{2}\)