Tính đạo hàm của hàm số sau \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maakeaabaGaamiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiGa % cogacaGGVbGaai4CamaaCaaaleqabaGaaGinaaaakiaacIcacaaIYa % GaamiEaiabgkHiTmaalaaabaGaeqiWdahabaGaaG4maaaacaGGPaaa % leaacaaIZaaaaaaa!45F4! y = \sqrt[3]{{{x^3} + {{\cos }^4}(2x - \frac{\pi }{3})}}\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaacE % cacqGH9aqpdaWcaaqaaiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaa % aOGaeyOeI0IaaGioaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaG % 4maaaakiaacIcacaaIYaGaamiEaiabgkHiTmaalaaabaGaeqiWdaha % baGaaGinaaaacaGGPaGaci4CaiaacMgacaGGUbGaaiikaiaaikdaca % WG4bGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaI0aaaaiaacMcaaeaa % caaIZaWaaOqaaeaadaqadaqaaiaadIhadaahaaWcbeqaaiaaiodaaa % GccqGHRaWkciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaisdaaaGc % caGGOaGaaGOmaiaadIhacqGHsisldaWcaaqaaiabec8aWbqaaiaaio % daaaGaaiykaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaeaa % caaIZaaaaaaaaaa!61E3! y' = \frac{{3{x^2} - 8{{\cos }^3}(2x - \frac{\pi }{4})\sin (2x - \frac{\pi }{4})}}{{3\sqrt[3]{{{{\left( {{x^3} + {{\cos }^4}(2x - \frac{\pi }{3})} \right)}^3}}}}}\)