ADMICRO
Cho phương trình \({z^2} - mz + 2m - 1 = 0\) trong đó \(m\) là tham số phức. Giá trị của \(m\) để phương trình có hai nghiệm \({z_1},{z_2}\) thỏa mãn \(z_1^2 + z_2^2 = - 10\) là:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 9
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiÁp dụng định lí Vi – et cho phương trình \({z^2} - mz + 2m - 1 = 0\) trong tập số phức ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \frac{b}{a} = m\\{z_1}{z_2} = \frac{c}{a} = 2m - 1\end{array} \right.\)
Khi đó: \(z_1^2 + z_2^2 = - 10 \Leftrightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}{z_2} = - 10\) \( \Leftrightarrow {m^2} - 2\left( {2m - 1} \right) = - 10 \Leftrightarrow {m^2} - 4m + 12 = 0 \Leftrightarrow m = 2 \pm 2\sqrt 2 i\)
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân
26/11/2024
38 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK