Cho hình tứ diện đều \(ABCD\) có cạnh bằng \(a\). Gọi \(M\) là trung điểm của cạnh \(AD\). Tính khoảng cách giữa hai đường thẳng \(AB\) và \(CM\) theo \(a\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChọn D
Gọi \(N\) là trung điểm của \(BD\), \(I\) là trung điểm của \(MN\).
Tam giác \(CMN\) là tam giác cân có \(CM=CN=\frac{a\sqrt{3}}{2};\,\,MN=\frac{a}{2}\)\( \Rightarrow CI=\frac{a\sqrt{11}}{4}\) nên có diện tích \({{S}_{CMN}}=\frac{{{a}^{2}}\sqrt{11}}{16}\).
Thể tích khối tứ diện đều cạnh \(a\) là \(\frac{{{a}^{3}}\sqrt{3}}{12}\).
Vậy thể tích khối tứ diện \(M.NCD\) là \({{V}_{M.NCD}}\)\( =\frac{1}{4}.\frac{{{a}^{3}}\sqrt{3}}{12}\)\( =\frac{{{a}^{3}}\sqrt{3}}{48}\).
Vậy \(d\left( D,\,\left( CMN \right) \right)=d\left( A,\,\left( CMN \right) \right)\)\( =d\left( AB,\,CM \right)\)\( =\frac{3{{V}_{M.CDN}}}{{{S}_{CMN}}}\)\( =\frac{\frac{3.{{a}^{3}}\sqrt{2}}{48}}{\frac{{{a}^{2}}\sqrt{11}}{16}}\)\( =\frac{a\sqrt{22}}{11}\).
Vì khối lập phương \(ABCD.A'B'C'D'\) có thể tích bằng \(8{{a}^{3}}\)\( ={{\left( 2a \right)}^{3}}\) nên cạnh của hình lập phương là \(2a\).
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Lương Văn Can