ADMICRO
Cho hàm số \(y={{x}^{3}}-3x+2\) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \({{x}^{3}}-3x+2-2m=0\) có ba nghiệm thực phân biệt.
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiChọn B
Ta có: \({{x}^{3}}-3x+2-2m=0\Leftrightarrow 2{{x}^{3}}-3x+2=2m\text{ }\left( 1 \right).\)
Số nghiệm của phương trình \(\left( 1 \right)\)bằng số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3x+2\) và đường thẳng \(y=2m.\)
Từ đồ thị ta suy ra: Phương trình đã cho có ba nghiệm thực phân biệt khi và chỉ khi \(0<2m<4\Leftrightarrow 0<m<2.\)
Vậy \(0<m<2\) thỏa mãn bài toán.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Nguyễn Đình Chiểu
13/11/2024
75 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK