Số nghiệm của phương trình \({2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTXĐ: \(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}{2.4^{{x^2} + 2x}} + {3.2^{{x^2} + 2x}} - 5 = 0\\ \Leftrightarrow 2.{\left( {{2^{{x^2} + 2x}}} \right)^2} + {3.2^{{x^2} + 2x}} - 5 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)
Đặt \(t = {2^{{x^2} + 2x}}\left( {t > 0} \right)\) thì phương trình (1) trở thành:
\(\begin{array}{l}2{t^2} + 3t - 5 = 0\\ \Leftrightarrow \left( {2t + 5} \right)\left( {t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t = - \dfrac{5}{2}\left( L \right)\\t = 1\left( {t/m} \right)\end{array} \right.\end{array}\)
Với \(t = 1\) ta có:
\(\begin{array}{l}{2^{{x^2} + 2x}} = 1\\ \Leftrightarrow {x^2} + 2x = {\log _2}1\\ \Leftrightarrow {x^2} + 2x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 2\end{array} \right.\end{array}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Đáp án D
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Lý Tự Trọng