ADMICRO
Hàm số \(y={{x}^{3}}-mx+1\) có hai cực trị khi và chỉ khi
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐể có hai điểm cực trị thì phương trình \(y'=3{{x}^{2}}-m=0\) cần có hai nghiệm phân biệt. Khi đó điều kiện là \(m>0.\)
Với điều kiện này ta tìm được hai nghiệm \({{x}_{1}}=-\sqrt{\frac{m}{3}},{{x}_{2}}=\sqrt{\frac{m}{3}}.\) Ta có \(y''\left( x \right)=6x\Rightarrow y''\left( {{x}_{1}} \right)=-6\sqrt{\frac{m}{3}}<0,\,\,y''\left( {{x}_{2}} \right)=6\sqrt{\frac{m}{3}}>0.\)
Do đó \({{x}_{1}},{{x}_{2}}\) tương ứng là các điểm cực đại và cực tiểu.
Chọn đáp án B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 12 năm 2022-2023
Trường THPT Hùng Vương
13/11/2024
707 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK