Viết phương trình chính tắc của elip \((E)\) biết (E) đi qua \(M\left( {\dfrac{3}{{\sqrt 5 }};\dfrac{4}{{\sqrt 5 }}} \right)\) và tam giác \(M{F_1}{F_2}\) vuông tại \(M\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét elip (E) : \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).
Vì \(M\left( {\dfrac{3}{{\sqrt 5 }};\dfrac{4}{{\sqrt 5 }}} \right) \in (E)\) nên \(\dfrac{9}{{5{a^2}}} + \dfrac{{16}}{{5{b^2}}} = 1\). (1)
Ta có : \(\widehat {{F_1}M{F_2}} = {90^ \circ } \Rightarrow OM = O{F_1}\) (\(MO\) là trung tuyến của tam giác vuông \(M{F_1}{F_2}\))
\( \Rightarrow {c^2} = OF_1^2 = O{M^2} = \dfrac{9}{5} + \dfrac{{16}}{5} = 5\) và \({a^2} = {b^2} + {c^2} = {b^2} + 5\).
Thay vào (1) ta được: \(\dfrac{9}{{5\left( {{b^2} + 5} \right)}} + \dfrac{{16}}{{5{b^2}}} = 1\) \( \Leftrightarrow 9{b^2} + 16\left( {{b^2} + 5} \right) = 5{b^2}({b^2} + 5)\)
\( \begin{array}{l}
\Leftrightarrow 9{b^2} + 16{b^2} + 80 = 5{b^4} + 25{b^2}\\
\Leftrightarrow 5{b^4} = 80\\
\Leftrightarrow {b^4} = 16\\
\Leftrightarrow {b^2} = 4\\
\Rightarrow {a^2} = {b^2} + 5 = 4 + 5 = 9
\end{array}\)
Vậy phương trình chính tắc của (E) là \(\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\).