Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;\,1} \right]\) thỏa mãn \(f\left( 1 \right) = 0, \int\limits_0^1 {{{\left[ {f’\left( x \right)} \right]}^2}{\rm{d}}x} = 7\) và \(\int\limits_0^1 {{x^2}f\left( x \right){\rm{d}}x} = \frac{1}{3}\). Tích phân \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTừ giả thiết: \(\int\limits_0^1 {{x^2}f\left( x \right){\rm{d}}x} = \frac{1}{3} \Rightarrow \int\limits_0^1 {3{x^2}f\left( x \right){\rm{d}}x} = 1\).
Tính: \(I = \int\limits_0^1 {3{x^2}f\left( x \right){\rm{d}}x} \).
Đặt: \(\left\{ \begin{array}{l}u = f\left( x \right)\\{\rm{d}}v = 3{x^2}{\rm{d}}x\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\rm{d}}u = f’\left( x \right){\rm{d}}x\\v = {x^3}\end{array} \right.\).
Ta có:
\(I = \int\limits_0^1 {3{x^2}f\left( x \right){\rm{d}}x} = \left. {{x^3}f\left( x \right)} \right|_0^1 – \int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} = 1.f\left( 1 \right) – 0.f\left( 0 \right) – \int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} = – \int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} \).
Mà: \(\int\limits_0^1 {3{x^2}f\left( x \right){\rm{d}}x} = 1 \Rightarrow 1 = – \int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} \)
\( \Leftrightarrow \int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} = – 1 \Leftrightarrow 7\int\limits_0^1 {{x^3}.f’\left( x \right){\rm{d}}x} = – 7 \Leftrightarrow \int\limits_0^1 {7{x^3}.f’\left( x \right){\rm{d}}x} = – \int\limits_0^1 {{{\left[ {f’\left( x \right)} \right]}^2}{\rm{d}}x} \), (theo giả thiết: \(\int\limits_0^1 {{{\left[ {f’\left( x \right)} \right]}^2}{\rm{d}}x} = 7\)).
\( \Leftrightarrow \int\limits_0^1 {\left( {7{x^3}.f’\left( x \right){\rm{ + }}{{\left[ {f’\left( x \right)} \right]}^2}} \right)} {\rm{d}}x = 0 \Leftrightarrow \int\limits_0^1 {f’\left( x \right)\left[ {7{x^3}{\rm{ + }}\,f’\left( x \right)} \right]} {\rm{d}}x = 0\)
\( \Rightarrow 7{x^3}{\rm{ + }}\,f’\left( x \right) = 0 \Leftrightarrow f’\left( x \right) = – 7{x^3} \Rightarrow f\left( x \right) = – \frac{7}{4}{x^4} + C\).
Với \(f\left( 1 \right) = 0 \Rightarrow – \frac{7}{4}{.1^4} + C = 0 \Rightarrow C = \frac{7}{4}\).
Khi đó: \(f\left( x \right) = – \frac{7}{4}{x^4} + \frac{7}{4}\).
Vậy: \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = \int\limits_0^1 {\left( { – \frac{7}{4}{x^4} + \frac{7}{4}} \right)} {\rm{d}}x = \left. { – \frac{7}{4}\left( {\frac{{{x^5}}}{5} – x} \right)} \right|_0^1 = \frac{7}{5}\).