ADMICRO
Xếp ngẫu nhiên 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C vào sáu ghế xếp quanh một bàn tròn (một học sinh ngồi đúng một ghế). Tính xác suất đề học sinh lớp C ngồi giữa 2 học sinh lớp .B
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiXếp 6 học sinh quanh một bàn tròn \(\Rightarrow n(\Omega)=5 !=120\)
Gọi A là biến cố: "Học sinh lớp C ngồi giữa 2 học sinh lớp B". Cố định học sinh lớp C, xếp 2 học sinh lớp B ngồi hai bên học sinh lớp C có 2!=2 cách.
Xếp 3 học sinh lớp A vào 3 ghế còn lại có 3! = 6 cách. \(\Rightarrow n(A)=2.6=12\)
Vậy xác suất của biến cố A là: \(P(A)=\frac{n(A)}{n(\Omega)}=\frac{12}{120}=\frac{1}{10}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Trường THPT chuyên Thái Bình
23/07/2020
73 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK