ADMICRO
Với các số \(a,\;b > 0\) thỏa mãn \({a^2} + {b^2} = 6ab,\) biểu thức \({\log _2}\left( {a + b} \right)\) bằng:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \({a^2} + {b^2} = 6ab \Leftrightarrow {\left( {a + b} \right)^2} = 8ab\)
\(\begin{array}{l} \Rightarrow {\log _2}{\left( {a + b} \right)^2} = {\log _2}8ab\\ \Leftrightarrow 2{\log _2}\left( {a + b} \right) = {\log _2}8 + {\log _2}a + {\log _2}b\\ \Leftrightarrow {\log _2}\left( {a + b} \right) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} \right).\end{array}\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK