Cho các số phức \({z_1},\,\,{z_2},\,\,{z_3}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1\) và \(z_1^3 + z_2^3 + z_3^3 + {z_1}{z_2}{z_3} = 0\). Đặt \(z = {z_1} + {z_2} + {z_3}\), giá trị của \({\left| z \right|^3} - 3{\left| z \right|^2}\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo các giả thiết đã cho đúng với mọi cặp số phức \({z_1},\,\,{z_2},\,\,{z_3}\) nên ta chọn \({z_1} = {z_2} = 1\), kết hợp giả thiết ta có:
\(z_1^3 + z_2^3 + z_3^3 + {z_1}{z_2}{z_3} = 0 \Leftrightarrow 1 + 1 + z_3^3 + {z_3} = 0 \Leftrightarrow z_3^3 + {z_3} + 2 = 0 \Leftrightarrow {z_3} = - 1\), thỏa mãn \(\left| {{z_3}} \right| = 1\).
Khi đó ta có 1 cặp \(\left( {{z_1},\,\,{z_2},\,\,{z_3}} \right) = \left( {1;1; - 1} \right)\) thỏa mãn yêu cầu của bài toán. Khi đó \(z = {z_1} + {z_2} + {z_3} = 1 + 1 - 1 = 1\).
\( \Rightarrow {\left| z \right|^3} - 3{\left| z \right|^2} = 1 - 3.1 = - 2\).
Chọn A.