Cho các số thực dương \(x,\;y \ne 1\) và thỏa mãn \({\log _x}y = {\log _y}x,\;\;{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right).\) Giá trị của \({x^2} + xy - {y^2}\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐK : \(x > y > 0,\;\;x,\;y \ne 1.\)
Ta có :
\(\begin{array}{l}\left\{ \begin{array}{l}{\log _x}y = {\log _y}x\\{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _x}y = \dfrac{1}{{{{\log }_x}y}}\\{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\log _x}y = \pm 1\\{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = x\,\,\left( {ktm} \right)\\y = \dfrac{1}{x}\end{array} \right.\\{\log _x}\left( {x - y} \right) = {\log _y}\left( {x + y} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{1}{x}\\{\log _x}\left( {x - y} \right) = {\log _{{x^{ - 1}}}}\left( {x + y} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{1}{x}\\{\log _x}\left( {x - y} \right) + {\log _x}\left( {x + y} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{1}{x}\\{\log _x}\left( {{x^2} - {y^2}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 1\\{x^2} - {y^2} = 1\end{array} \right. \Leftrightarrow {x^2} + xy - {y^2} = 1 + 1 = 2\end{array}\)
Chọn D.