ADMICRO
Giá trị lớn nhất của hàm số \(f\left( x \right) = \dfrac{{{x^2} - 8x}}{{x + 1}}\) trên đoạn \(\left[ {1;\;3} \right]\) bằng:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTXĐ:\(D = R\backslash \left\{ { - 1} \right\}.\)
Ta có: \(x = - 1 \notin \left[ {1;\;3} \right].\)
Sử dụng MTCT để làm bài toán:
Bước 1: Bấm MODE 7 và nhập hàm \(f\left( x \right) = \dfrac{{{x^2} - 8x}}{{x + 1}}\) vào máy tính.
Bước 2: Start = 1; End = 3; Step = \(\dfrac{{3 - 1}}{{19}} = \dfrac{2}{{19}}.\)
Ta được kết quả:
Ta thấy GTLN của hàm số là \({y_{\max }} = - \dfrac{7}{2}\;\;khi\;\;x = 1.\)
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK